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Abstract

Though it is commonly believed that all nuclei are spherical, they in fact come in a variety

of shapes depending primarily upon how many protons and neutrons they have. The principle

method used to investigate the shape of the nucleus is exciting it to high angular momentum

and observing the gamma rays emitted as the nucleus slows down. Based on characteristics

and patterns of these emissions, we can discern the structure of the nucleus and which specific

nucleons contribute to that structure.

From observational evidence, it is known that nuclei tend to be spherical when they have

close to a “full shell” of nucleons. This concept is similar to the stability of noble gases

caused by full shells of electrons. Past studies have determined that shells fill at certain “magic

numbers” of nucleons, when either the proton number (Z) or the neutron number (N ) of the

nucleus is, among other values, 82. The farther away Z orN is from these magic numbers, the

more deformed the nucleus will be.

Lutetium has 71 protons (Z = 71), though there are a wide variety of lutetium isotopes all

with the same Z but different N . It is possible to observe an evolution in deformation as N is

increased. 157Lu is still nearly spherical even with 86 neutrons, 4 beyond the magic number of
82. However, at N = 90 (161Lu), the nucleus becomes well-deformed and exhibits very few
properties of a spherical nucleus. As such, the transition between generally spherical lutetium

nuclei and generally non-spherical nuclei occurs between N = 86 and N = 90, where 160Lu

(N = 89) lies.
This project aimed to investigate the structure of such a transitional nucleus, identify the

predominant factors influencing its shape, and explore signature splitting in the atomic mass

(A) ≈ 160 region. High-spin states of 160Lu were populated using the 120Sn(45Sc, 5n)160Lu
reaction at Argonne National Laboratory. The reaction ran at a beam energy of 215MeV for a

total of 3 days of data collection.

An instrument called Gammasphere was employed to capture information about the high-

energy photons (gamma rays) that these excited states emit as they cool. Gammasphere houses

up to 110 high-purity germanium, Compton-suppressed gamma ray detectors. The device

is particularly well-suited for the study of very faint rotational sequences and observing the

highest spins of rotational bands.

Experimental evidence showed abnormal signature splitting behavior in 160Lu. We believe

this behavior is due to an alignment gain in 160Lu that is hidden in its more rigid neighbors.

The transitional nature of 160Lu leaves it more susceptible to shape-driving effects of given

nucleons, and allows for the additional malleability required to manifest this alignment gain

which influences the nucleus’ signature splitting.

Keywords: Gammasphere, 160Lu, signature inversion, triaxial
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1 Introduction

At the beginning of this project, we intended to study two exotic phenomena that occur in high-

spin nuclei. Both phenomena imply the existence of an asymmetrically-shaped nucleus, where one

of the phenomena, known as “wobbling,” is a product of spinning something like an asymmetric

top [1]. The other phenomenon, ultra-high spin bands, is only seen at the upper limits of angular

momentum [2]. These phenomena have only been seen in isolation in individual nuclei. There is

good reason to believe that if these phenomena could simultaneously appear in the same nucleus,

they would most likely be linked together in 161Lu. However, scheduling and technical problems

at Argonne National Laboratory, where the experiment was to be run, prevented the collection of

the data in a timely manner to complete the intended project.

Fortunately, a trial reaction was run in the process of testing equipment upgrades at the lab, where

the same reaction we had intended to use for the study of 161Lu was performed. However, for the

purposes of this project, the data that the trial reaction yielded was not optimized for our study

due to three primary factors. For one, the trial run was 40% shorter than the intended experiment.

The trial consists of only three days of data collection, vice the five days we have scheduled.

Second, there were 15% fewer detectors online than normal. Finally, only 1/3 of the total beam

intensity was achieved. The structures and patterns that we hoped to identify in 161Lu are expected

to be so faint that they would only be visible in analyzing larger amounts of data than the trial

could provide. However, the trial data set did provide a significant amount of new information

concerning the odd-odd nucleus 160Lu (meaning that is has an odd number of both protons and

neutrons).

Roughly one-third of nuclei are spherical or near-spherical, particularly those near magic shell

gaps of stability. These magic gaps represent full nuclear shells in much the same way that the

filling of electron shells gives noble gases their stability. A shell of the nucleus becomes full when

it reaches a point where the binding energy of adding one more nucleon is greater than the binding

energy it took to add the last nucleon. As such, full nuclear shells represent particularly stable

configurations of the nucleus in that adding additional nucleons requires a great amount of energy.

From both experimental and theoretical evidence, the magic gaps are canonically held to be located

at either proton number (Z) or neutron number (N ) equal to 2, 8, 20, 28, 50, 82, or 126. As nuclei

move away from filled magic shell gaps, they tend to become more and more deformed.

Focusing on isotopes of lutetium (in other words, keeping Z fixed at 71), it is possible to observe

an evolution in deformation as N is increased. Even with as many as 86 neutrons, 4 beyond the

magic number of 82, 157Lu is still just barely deformed away from a spherical shape. However,

at N = 90 (161Lu), the nucleus becomes well-deformed and exhibits very few properties of a

spherical nucleus. As such, the transition between generally spherical lutetium nuclei and generally

non-spherical lutetium nuclei occurs between N = 86 and N = 90, where 160Lu (N = 89) lies.
In fact, triaxial deformation (which describes an asymetrically-shaped nucleus) is thought to play

a pivotal role in this transitional region. Thus, an analysis of the structures of this nucleus will

provide insight into the transitional regime of deforming nuclei.
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2 Experimental Methods

2.1 Function of LINACs

A tremendous amount of excitation energy is required to populate the nuclear states of interest

in this project. The reaction we ran requires sufficient energy to overpower the repulsive electro-

magnetic Coulomb forces that would otherwise prevent the nuclei from coming into contact. The

prerequisite energy can be obtained by accelerating a nucleus through a particle accelerator.

The accelerator utilized for this work is ATLAS (Argonne Linear Accelerator System) located

at Argonne National Lab. ATLAS, as its name implies, is a linear accelerator (LINAC) capable

of reaching energies of 7-17 MeV/nucleon [3]. Broadly speaking, LINACs utilize pulsed radio-

frequency (RF) waves to accelerate particles down a wave guide towards a target at the opposite

end. Doing so requires a substantial amount of engineering precision in terms of the timings and

tolerances necessary to achieve effective acceleration. Though many facilities can achieve vastly

higher energies, the types of reactions of interest to those studying nuclear structure tend to need

energies close to, but not greater than, the Coulomb barrier of the nucleus.

Figure 1: Sketch of a niobium drift tube as employed in the ATLAS facility [6].

LINACs alternately attract and repel the charged beam particle along the length of the tube. This

is accomplished by a series of niobium “drift tubes” that are each split in half (Figure 1). However,

since the beam particles begin as neutral elements, they must first be stripped of some of their outer

electrons to acquire a net positive charge. Then, each drift tube is charged with the opposite charge

on each half of the tube. Thus, the beam is attracted to the front side of the next tube and repelled

from the back side of the tube that it just left. As the beam passes into the middle of the drift

tube, the polarization of the tube must be reversed in order to continue its acceleration. In order to

maximize the acceleration effect, the polarity needs to be changed as rapidly as possible.
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To facilitate the rapid polarity changes, each drift tube is cooled until it becomes superconducting

(at approximately 9 K for niobium [4]). This helps maximize the energy transfer and minimize

losses that would occur at higher temperatures. Otherwise, it would be impossible to alternate the

charge rapidly enough to effectively accelerate the beam. As the beam is accelerating, a variety of

electric and magnetic fields steer it along its path and collimate it down to the desired size. Finally,

at the end of the accelerator, the beam is directed at target material that is housed in one of several

experimental devices. In the case of this project, the device was a suite of gamma-ray detectors

known as Gammasphere [5] which was utilized to detect the emissions of the collision.

2.2 Function of Gamma Ray Detectors

2.2.1 Gamma-Ray Interactions with Matter
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Figure 2: Graphical representation of the various

types of radiation that comprise the electromag-

netic spectrum [8].

Before discussing how we can collect informa-

tion on gamma rays, our first approach to the

problem should be to gain an understanding of

how gamma rays interact with matter. After all,

it will be through exploiting these interactions

that we will be able to discern more quantita-

tive information about the gamma rays them-

selves.

Gamma rays are simply a form of electromag-

netic (EM) radiation, just like light. However,

gamma rays comprise the portion of the EM

spectrum distinguished by having extraordinar-

ily high frequencies, and consequently very

short wavelengths (Figure 2). This implies that

gamma rays represent the most energetic side

of the EM spectrum. Planck’s equation explic-

itly reveals the direct proportionality between

energy and frequency:

E = hf (1)

where E is energy, h is Planck’s constant of

proportionality, and f is the frequency. Thus,

gamma rays follow many of the same basic

principles of behavior that we are accustomed

to seeing in visible light. However, their sig-

nificantly higher energy yields interesting new

effects. Since gamma rays fall at the highest

energy end of the EM spectrum, they do not

have an upper boundary on their energy and so their interactions can be broken into three general
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Incident Photon

Emitted Electron

Nucleus

Figure 3: A diagram of a typical photoelectric absorption and emission event.

categories depending on the energy of the gamma ray in question. In general, the unit of energy

employed when discussing gamma rays is the electron volt (eV). 1 eV = 1.6× 10−19 J and is the
energy required to move a single electron across an electrical potential difference of 1V. The ma-
jority of the following information comes from reference [7] with supplemental sources provided

as needed.

Photoelectric Absorption (< 100 keV) Also known as the photoelectric effect, this phenomenon

was utilized as early experimental evidence that energy was quantized into discrete bundles and

was not a continuous quantity. In fact, despite the rest of the dramatic and revolutionary 20th-

Century developments that followed, an accurate description of the photoelectric effect was the

only discovery that won Albert Einstein a Nobel Prize [9].

The photoelectric effect occurs when atoms absorb relatively low-energy gamma rays and then

release this energy through the emission of an electron. The energy exchanged during such a

reaction is given by:

Te = Eγ − φ (2)

where Te is the kinetic energy of the emitted electron, Eγ is the energy of the gamma ray, and φ
is the work function of the absorbing atom, which represents the amount of energy needed to eject
an electron. Figure 3 shows a representation of the photoelectric effect. Empirically, we know that

the probability of the photoelectric effect occurring is tremendously dependent on Eγ , dropping

off significantly as Eγ increases. Only the lowest energy gamma rays seen in our experiments will

interact through this mechanism, though it is convenient when they do as the entirety of Eγ will be

deposited into the absorbing atom.

Compton Scattering (100 keV− 1MeV) If a gamma ray impacts an atom with too much energy

to be directly absorbed, it will instead scatter in a different direction while simultaneously ejecting

an electron from the atom. This process is known as Compton scattering and is shown in Figure 4.

For the most part, the energies associated with electrons in an atom’s orbital are far less than Eγ

when Compton scattering occurs, so we can treat the electron as if it is at rest and the collision as
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Figure 4: A diagram of Compton scattering. Adapted from [10].

if it were elastic [11]. As such, the leftover energy in the scattered gamma ray (E ′γ) is a function
of its original energy (Eγ) and the angle it was scattered at:

cos θ = 1−mec
2

(
1

E ′γ
− 1

Eγ

)
(3)

where me is the mass of an electron and c is the speed of light. Of course, 0◦ ≤ θ ≤ 180◦

which allows for a wide variety of deposited energies. However, there is a maximum energy

corresponding to θ = 180◦. This energy is known as the Compton edge since it is impossible for
the gamma ray to transfer any more energy in a Compton scattering event than this value. The

Compton edge is given by:

Eedge =
2(Eγ)

2

mec2 + 2Eγ

(4)

Gamma rays can scatter an indefinite number of times with the hopeful end result of eventually

being photoabsorbed inside the detector. However, as we will see later, we frequently are not

so lucky. The energies from which Compton scattering is most often observed are precisely the

energies of interest in our study so we must carefully consider such effects.

Pair Production (> 1.022MeV) The final potential interaction is known as pair production. Per

the infamous equation E = mc2, mass can be converted into energy and vice-versa. So long as
momentum and charge are conserved, gamma rays with sufficient energy can spontaneously create

an electron-positron pair. This requisite energy is 1.022MeV = 2mec
2 and is much greater than

what will typically be encountered in a high-spin emission from the nucleus.

Figure 5 shows the different types of gamma-ray interactions with matter and the energy regimes

in which they are dominant.
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Figure 5: Cross sections (equivalent to probability) for various gamma-ray interactions with ger-

manium. The shaded region denotes the range of energies for which Compton scattering is the

most prevalent effect. Data taken from [12].

2.2.2 Gamma Ray Detectors

In order to collect data on how 160Lu nuclei decay, it is necessary to develop a method of collecting

the gamma rays emitted during this decay process. The chosen tool for this task is a high-purity

germanium (HPGe) semiconductor detector. Although there are numerous different tools that can

detect gamma rays, semiconducting devices are preferred for their high energy resolution—that is,

the ability to distinguish energies of gamma rays that are very close in energy to each other. This

property is critically important to the study of nuclear structures as the gamma rays that distinguish

different decay bands may differ by just 1 or 2 keV.

Semiconducting elements are those that have properties somewhere in between those of a pure

conductor and those of a pure insulator. Germanium, along with other elements on the border be-

tween halogens and metals (notably silicon), has such properties. The valence shell of germanium

has four electrons, filling it half-way. Because it has these four electrons to form covalent bonds, it

tends to form a regular crystal lattice structure by bonding with its four nearest neighbors. In this

state, all electrons are fixed in place in the structure of the lattice.

The basic property of metals that allow them to conduct electricity well is that their valence elec-

trons are delocalized, meaning that they are not fixed to a single atom but rather are free to move

from atom to atom throughout the entire solid lattice. The electrons in the ground state of an atom

(that is, an atom with no added energy) are said to exist in the valence band of that element. In

order for the electrons to become mobilized as they are in metals, they must receive enough ad-

ditional energy to break out of the valence band and enter the conduction band of that material

(See figure 6). To do so, they must receive at least enough energy to cross the band gap, which

is a region of energies where the electrons cannot exist. For metals and other conductors, the

valence band and conduction band overlap, meaning that electrons are always delocalized while
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Figure 6: Band gap structure of a typical semiconductor. Adapted from [13].

under typical operating conditions. For others, the electrons first must be excited to cross the band

gap. Insulators typically require ≈ 6 eV to cross the band gap. Semiconductors mediate these two

extremes as their band gap energies are typically small (≈ 1 eV), allowing the material to readily
conduct electricity after receiving a small amount of energy. For instance, germanium’s band gap

is approximately 0.72 eV [14]. Although this technically does place a lower limit on the energies

of photons that HPGe can detect, even the lowest energy gammas produced from the decay of a

nucleus are on the order of hundreds of keV and, as such, much greater than germanium’s band

gap.

The operating principle of semiconductor detectors is that incoming gamma rays provide the elec-

trons in the semiconducting crystal with a certain amount of energy which excites a given number

of electrons into the conduction band. When the electrons leave the valence band, they create a

net-positively charged “gap” which is called an electron hole. When a significant voltage is ap-

plied to the semiconductor, the electrons move to one contact and the holes move to the other (in

the sense that the rest of the electrons “shift over,” thereby moving the hole to one side), produc-

ing a potential difference. Figure 6 illustrates the energy spacing between the valence band and

the conduction band, as well as a few electrons that have been excited into the conduction band.

Because the band gap energy for different kinds of semiconductors is known, the magnitude of

the potential difference can be used to determine how many electron-hole pairs were formed, and

consequently the energy of the original gamma ray.

2.3 Compton Suppression

Ideally, the germanium atoms would absorb the entirety of the energy of gamma rays all at once.

However, since the gamma rays we are interested in studying are within the range of Compton

scattering dominance, we know that this is unlikely. After a single scattering event, the gamma has

lost some energy, some electron-hole pairs have been produced, and the photon is now traveling

in a different direction. If the photon remains in the germanium crystal such that it continues to

interact with other germanium atoms until it is entirely absorbed, no error is introduced. The net

sum of electron-hole pairs is the same as it would be if all of the energy was absorbed at once, not

to mention the fact that the time scale even for numerous scattering events is too small to detect.
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However, a problem does arise if the photon is scattered in a direction that sends it out of the crystal

at any time before its energy is entirely absorbed. When this happens, an incorrect energy will be

recorded thus adding noise, known as Compton background, to the experimental data.

To combat the Compton background, a technique known as Compton suppression has been devel-

oped to limit noise. Compton suppression involves surrounding the HPGe detector with another

detector to look for any gammas that are scattered out of the germanium. In this case, the other

detector is a Bismuth-Germanate (BGO) scintillator detector. A scintillator works essentially like

a semiconductor detector does, except that rather than using delocalized electrons to produce an

electric pulse, it produces a pulse by using de-exciting electrons that produce photons after striking

a photosensitive plate. The photons are then amplified by photomultiplier tubes and then con-

verted to an electric pulse. In general, scintillators have much lower energy resolution than do

semiconductor detectors, but the energy resolution of the BGO detector is irrelevant for Compton

Suppression as the BGO is employed to remove extraneous data rather than to try to recover it.

BGO is roughly 34% more dense than Ge, so it is safe to assume that any photons that enter the

BGO detector will stop there and be absorbed.

Both the HPGe and the BGO detectors are run simultaneously while experimental data is collected.

When the experiment is running, gamma rays that occur within the same coincidence window of

both detectors are identified and electronically vetoed, meaning that they never enter the data set.

If both detectors witness an event at the same time, that gamma must have been scattered out of

the HPGe detector before its energy was fully absorbed. By canceling such an event, fewer partial

energies will be recorded by the main detector. As a result, the background noise of the data set is

greatly reduced allowing weaker gammas to be discerned than could have been otherwise.

Ideally, it would be best to surround a reaction completely with HPGe detectors, but there are

immediate logistical constraints as larger germanum detectors become prohibitively expensive and

also lose energy resolution. One factor contributing to the increased resolution of small detectors is

the lesser degree to which the Doppler effect alters photon energies. The Doppler effect is a change

in the observed frequency of a wave depending on the source of the wave’s relative motion with

respect to the detector of the wave. Although the Doppler effect is often discussed in the context of

sound waves, a gamma ray is just another variety of wave. Individual gamma rays are referenced

by their energy, but, as in Equation 1, the frequency of the gamma ray can also be influenced by

Doppler shifts.

In this case, the moving source is the nucleus produced in the heavy-ion reaction. As the compound

nucleus will not be stationary after the reaction, the gamma ray is emitted by a source that is

moving and, therefore, the frequency (and more importantly, the energy) of that gamma ray will be

influenced by the direction from which the gamma ray is observed. If the detector was very large,

different areas of the crystal surface could see different Doppler shifts depending on the incidence

angle of the gamma. By using smaller detectors, the change in Doppler shift from one side of

the detector to the other is minimal, allowing for a better measurement of the original intensity.

Considering the effects of Doppler shifts was critical to the analysis of our experimental data, and

will be discussed further in section 5.3.
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3 Nuclear Structure

Before presenting our experimental results, we would be remiss not to provide a rough sketch of

the theory of nuclear structure we employed in our analysis. This section provides a foundation in

much of the terminology and theory utilized in the presentation of our data.

Ultimately, the goal of nuclear physics is to develop a model for the behavior of the nucleus in gen-

eral. In other words, to create a way of thinking about nuclei both physically and mathematically

that explains all of the unique characteristics of every known nucleus and predicts characteristics
of nuclei not yet observed. Unfortunately, there is no such unified model of nuclear physics. There

are, however, a wide variety of isolated models utilized for mathematical calculations and physi-

cal descriptions of specific behaviors in specific nuclei. Even still, many of these models excel in

the regimes they are tailored to fit. Because experimental results corroborate theoretical predic-

tions using these models, we can confidently proceed with the cautioned understanding that such

a model has some basis in physical reality, albeit perhaps an imperfect one. Variants of the nuclear

shell model serve our purposes well for our work in the A ≈ 160 region.

3.1 Nuclear Shell Model

By way of introduction to the shell model, it is perhaps best to illustrate it through its chemistry

analog: the atomic shell model. In truth, much of the notation and nomenclature for the nuclear

shell model was borrowed from chemists since this analogy works so well.

The atomic shell model holds that, in an atom, the electrons “orbit” within the electromagnetic

potential created by the central force of the Coulomb attraction of the nucleus. The electrons

exist in orbitals as defined by their quantum numbers. As additional electrons are added into the

atom, they are placed in successively higher shells, typically referred to as energy levels. However,
the handy trick of the shell model is that, when studying the properties of any given atom, it is

unnecessary to consider every particle in every shell. Rather, we only need consider the outermost

shell, the valence shell, of electrons which governs the properties of that atom.

The impetus behind the creation of a shell model for the nucleus came out of a desire to explain

the patterns of stable nuclei. Well before the development of this model, researchers observed that

nuclei with particular numbers of nucleons (Z and/or N equal to 2, 8, 20, 28, 50, 82, or 126) had

unusually high binding energies per nucleon than what would be expected based on theoretical

calculations and the behavior of neighboring nuclei. Binding energy represents the amount of

energy needed to break apart the nucleons, so these higher values represented abnormally stable

nuclei. An elegant explanation of these numbers, referred to as the magic numbers, became the

primary focus of theoretical nuclear physicists.

Atoms exhibit similar behavior. As one moves left-to-right across the periodic table, certain prop-

erties of the atoms gradually change up to the noble gases. Upon wrapping around the table, there

is a dramatic change in behavior before a similarly gradual trend emerges again. Clearly, a signifi-

cant phenomenon occurs between the noble gases and the alkali metals on the ends of the periodic

table. Early atomic chemists described this phenomenon as the filling of atomic shells with elec-
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trons. As the shells become completely filled, they exhibit great stability (the noble gases). Since

the atomic shell model succinctly described the stability and behavior of atoms, it as thought that

a similar approach could also explain the magic numbers in nuclei.

This same basic framework very roughly summarizes the nuclear shell model, with a few key dif-

ficulties of translation. For one, an orbit requires a potential of some sort. Atomically, this is fairly

simple as the electrons orbit the fixed potential created by the nucleus. Moreover, due to the rela-

tively small size of the nucleus compared to the electron cloud, it is fairly easy to understand how

the electrons could occupy “spatial” orbitals and physically orbit the nucleus without colliding.

However, within the nucleus, we enter a recursive loop as the nucleons move about a potential that

they themselves create. Similarly, the nucleons are so physically close together that it is difficult

to imagine how they could occupy such spatial orbitals without colliding.

Just as the atomic shell model prevented us from having to consider all of the sub-shell electrons,

the nuclear shell model allows us to consider each individual nucleon as it orbits the potential of

the rest of the nucleons. This approximation dramatically reduces the mathematical complexity of

the many-body problem that would otherwise govern interactions in the nucleus. The spatial orbits

of the nucleons are resolved by the Pauli principle. As discussed below in Section 3.3, nucleons

tend to pair in groups of two in their orbits about the nucleus. If they were to collide, the orbital

angular momentum of the particle pair would transfer in the collision to attempt to excite the

nucleons to a higher energy level. However, the lower energy levels within the nucleus are located

“beneath” a large number of higher energy levels that are already filled. Since the Pauli principle

prevents multiple pairs of nucleons from co-inhabiting the same orbital, the only opportunity for

the supposedly colliding nucleons to promote in energy level would be to jump all the way up to

the valence shell. For the vast majority of nucleons, especially in large A ≈ 160 nuclei, the energy
gap between inner-shell nucleons and the valence shell is far greater than what could be expected

to transfer in such a collision. Thus, since these collisions are greatly energetically unfavored, they

do not occur and we can imagine that the nucleons do fill such spatial orbitals. That being said,

the logical extension of that argument is that certain upper-shell nucleons would be able to collide

since the energy difference is smaller. This effect does occur, and its importance to our work will

be discussed in Section 3.3.

3.1.1 Shell Model Potential

Woods-Saxon Potential As mentioned previously, any model that includes spatial orbitals must

also include some form of a potential about which the nucleons can orbit. The design of an ap-

propriate potential is crucially important to the model’s ability to produce accurate results. Initial

guesses attempted to reuse canonical quantum mechanical potentials, such as an infinite square

well or a harmonic oscillator potential. The chief problem encountered while using these poten-

tials is that they fundamentally do not reflect the reality of the potential generated by the nucleus,

though they do make the calculations easier. Particles require an infinite amount of energy to es-

cape from these potentials, though they naturally can actually escape with some finite amount of

energy.

The initial refinement of the shell model potential was selecting a function that would smoothly
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Figure 7: Woods-Saxon potential calculated for an A = 160 nucleus. Parameters were V0 =
50MeV, a = 0.5 fm, and r0 = 1.22A1/3 fm.

transition to zero with increasing distance from the nucleus. Such a potential is known as a Woods-

Saxon potential and is preferred as it more accurately reflects the experimentally determined charge

distribution of the nucleus. For a distance r away from the center of the nucleus, the potential is of

the form [15]:

V (r) = − V0

1 + exp( r−R
a

)
(5)

where V0 is a representation of the strength of the field, R is the radius of the nucleus and a is a
diffuseness parameter. A sketch of this potential is shown in Figure 7.

Although the Woods-Saxon potential represented a significant improvement on previous potentials

used for shell model calculations, it still did not entirely reproduce the observed magic numbers.

Some further modification was needed to better fit reality.

Spin-Orbit Potential It was eventually discovered that the missing component of the shell model

potential is a spin-orbit interaction of the nucleon. This concept is derived from the much more

fully developed idea of atomic spin-orbit interactions, where the intrinsic spin of the electrons

creates a magnetic moment that interacts with the magnetic field generated from the apparent

orbital motion of the nucleus about the electron. The underlying physical explanation of the nuclear

spin-orbit interaction is still not entirely understood, though adopting the form and concept of such

a potential from atomic physics reproduces the magic numbers. Thus, there is some basis for the

existence of this potential in reality.

The angular momentum due to the nucleon’s orbit is referred to as � and the intrinsic spin of the
nucleon is referred to as s. Accordingly, for a given nucleon, we can define a quantity called the
total angular momentum as the vector sum j = �+s. s can either be aligned parallel or anti-parallel
to �, yielding splitting of the total angular momentum as j = � ± 1

2
since, for a single nucleon,
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|s| = 1
2
. It is the consideration of the orientation of this alignment that provides the potential the

necessary complexity to explain observed experimental results.

The directional orientation of the spin-orbit interaction is attached to the overall potential as a dot

product [7]:

V (r) = Vso(r)� · s (6)

The effective result of this new potential is that, for a given �, the orbital with an aligned spin term
is much more tightly bound to the nucleus and lies at a substantially lower energy level than the

anti-parallel orbital. The magnitude of this energy splitting depends on the magnitude of �:

ΔE =
1

2
(2�+ 1)h̄2 (7)

At high �, ΔE is so large that the down-shifted orbital leaves its original shell and forms its own,

lower-energy shell. The right portion of Figure 8 shows the splitting of the orbitals due to the

spin-orbit potential. Note in particular the 1f7/2 and 1g9/2 orbitals that occupy the gaps in between
shells. These gaps were essential in order to correctly explain the observed magic numbers. Criti-

cally, the actual orientation of the orbit of the nucleus is irrelevant leading to the 2j+1 degeneracy
observed in each state that reproduces the magic numbers.

3.1.2 Shell Model Quantum Numbers

When discussing quantum mechanics and specific states of a system, it is useful to have a discreet

and consistent method of identifying the different states a nucleon can exist in. This labeling con-

vention employs quantum numbers, much as with electrons, to uniquely identify states. However,

not all of the atomic quantum numbers apply in the nuclear realm. The shell model employs the

following four quantum numbers [16]:

1. n is the index of the orbital. Although this looks deceptively similar to the principal quantum
number of chemistry, the first shell model quantum number is completely different. Though

both refer to a sequential energy level of sorts, in the atomic realm, n represents the overall

excitation and potential energy of the electron. In the nuclear realm, however, n is more of

counter representing the first, second, third, . . . orbital that has a particular �.

2. � is the orbital angular momentum of the state. The value of � matches to the traditional
spectroscopic labels from chemistry, in that � = 0 is an s orbital, � = 1 is a p orbital, � = 2
is a d orbital, and so forth.

3. j is the total angular momentum of the nucleon as described above.

4. mj is the projection of j onto a specified axis, traditionally taken to be the z axis. Although
the value of mj has no physical effect in a spherical potential, it is important to consider in

the degeneracy of a state with a given j. Since the angular momentum can be fully aligned
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Figure 8: Energy levels of the nuclear shell model. The left side shows the degenerate shell model

potential and the right shows the energy level splitting caused by the inclusion of the spin-orbit

potential. The numbers next to each orbital indicate the degeneracy, or capacity of nucleons, of

that orbital and the boxed numbers indicate where the magic numbers occur. Note that the down-

shifting of the 1f7/2 and 1g9/2 orbitals allow for the occurrence of magic numbers in between shell

gaps.

forward or back on that axis, and integer steps in between, a given n, �, and j can have 2j+1
values ofmj and consequently 2j + 1 nucleons.

3.2 Deformed Shell Model (Nilsson Model)

As successful as the shell model is at predicting the magic numbers, its foundation rests upon the

fundamental assumption that the nucleus is spherical. Such a spherical nucleus creates a uniform,

spherical potential. However, nuclei are only spherical insofar as their Z and N are near magic

numbers. As seen in Figure 8, the first few magic numbers are relatively close together. Accord-

ingly, nuclei in these regions are typically spherical because, even if they are in the middle of the

mid-shell gap, they are not very far from the magic numbers.

As the magic numbers spread apart, specifically between 50 and 82 in the 150 ≤ A ≤ 190 region,
nuclei that exist at mid-shell (halfway between gaps) are far enough away from the magic numbers

that they are markedly deformed. Since nuclei in this region are the focus of our study, we require

further modifications to our potential to more accurately represent the physical reality of the nuclei

in this study. These modifications maintain the same basic premises of the regular shell model, but
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allow for the decoupling of the motion of the nucleon about the nucleus from the motion of the

nucleus itself.

x
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Ω

Figure 9: Sketch of a nucleon orbiting a deformed nucleus. j is the total angular momentum and

Ω is the projection of the angular momentum where z is the symmetry axis.

Figure 9 shows a sketch of a nucleon orbiting about such a deformed nucleus. From this diagram,

we can see that the energy of an orbital depends significantly on the inclination of that orbit. This

manifests itself as a parameter called Ω, and is defined as the projection of the angular momentum
of the nucleon (j) along the symmetry axis. As the angle θ in Figure 9 becomes smaller and the
nucleon tends to orbit around the “equator” of the nucleus, Ω will be very small since the direction

of angular momentum is normal to the plane of the orbit. Conversely, as θ becomes greater and
the nucleon’s orbit begins to cross the poles of the nucleus, Ω will be rather large. In the latter

scenario, the nucleon spends most of its orbit a substantial distance from the core of the nucleus

when compared to the former. Accordingly, such highly-inclined orbits require the nucleon to have

significantly more energy than equatorial orbits. Because of this, we can use Ω as a measure of

the sequential energy ordering of various orbitals within a shell. The energy dependence on Ω
breaks the 2j + 1 degeneracy of the shell model states and will be critically important for later
calculations.

When applying the deformation of the nucleus to the shell model, the primary consideration is

ensuring that the particle in question is affected by a non-spherical orbital of the form:

V (r) = V0(r) + V2(r)P2(cos θ) (8)

where P2(cos θ) is the second-order Legendre Polynomial and serves to deform the potential along

the symmetry axis. Traditionally, the symmetry axis is assumed to be the z axis of a Cartesian co-
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ordinate system. The actual form of the potential, beyond the inclusion of a deformation parameter,

is mostly a matter of preference. Some theoretical calculations employ the Woods-Saxon potential

which does yield more accurate results (since the Woods-Saxon potential is a good description of

reality as discussed earlier), but here we will use the more basic harmonic oscillator potential to

simplify the presentation.

In order to employ this new model in theoretical calculations, we write down the Hamiltonian of

the system, which is the sum of the system’s kinetic and potential energy and therefore represents

the total energy of the system at any time (H = T + V ) [16].

H =
p2

2m
+

1

2
m

[
ωx(x

2 + y2) + ωzz
2
]
+ C� · s+D�2 (9)

The first term, p2

2m
, satisfies the inclusion of the kinetic energy (T ) of the nucleon in the Hamilto-

nian. It is the familiar form of T = 1
2
mv2 with the momentum of the nucleon substituted for its

velocity (p = mv).

The second term is the potential of the nucleon within the harmonic oscillator potential. Each

ωi term represents the oscillation frequency in each direction of the coordinate system. For an

isotropic, three-dimensional oscillator, this would be of the form 1
2
mωr2 where the spherical co-

ordinate r can be converted to a Cartesian coordinate system as r2 = x2 + y2 + z2. However, the
deformation around the z axis necessitates the separation of the frequencies since the deformed

situation has ωx = ωy �= ωz.

The third term is the familiar spin-orbit interaction presented previously, and the fourth term ap-

plies corrections to high-� nucleons to ensure the magic numbers are properly returned. The ex-
panded coefficients on these terms are C = −2h̄ωoκ and D = −h̄ω0κμ. The particular values of
κ and μ are specific to the shell in question and can be determined by adjusting the parameters to

suit experimental data.

3.2.1 Deformation Parameters

Though the ωi terms are convenient while working with the harmonic oscillator itself, since we are

considering the deformation of the nucleus it is more convenient to write the Hamiltonian using a

deformation parameter. There are an unfortunate number of various such parameters employed to

describe deformed nuclei. This section will serve as a familiarization of the language used in the

context of the deformed shell model before continuing to develop the theory.

1. δ is a rather straightforward parameter of deformation and was the original parameter in-
troduced by Nilsson when he first published the model. Although it has a few different

definitions, one starting point is to introduce it as a correction to the quadrupole moment

(Q0) for a deformed nucleus. Q0 is essentially a representation of the distribution of charge

around the center of the nucleus and, applying the δ deformation, has the form [17]:
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Figure 10: Cross section of a typical ellipsoid. Note the definitions of the semi-major (a) and
semi-minor (b) axes.

Q0 =
4

3

〈
Z∑

k=1

r2k

〉
δ (10)

where the sum aggregates the square of the radial position of each proton. With a few basic

assumptions about the shape of the nucleus, δ can be written as [18]:

δ =
3

2

a2 − b2

a2 + 2b2
(11)

≈ ΔR

Ravg

+
1

6

(
ΔR

Ravg

)2

+ . . .

≈ ΔR

Ravg

(12)

ΔR is the difference between the semi-major (a) and semi-minor (b) axes of the ellipsoid
(ΔR = a − b). Refer to Figure 10 for an illustration of these dimensions. Here, we define
Ravg as Ravg = R0A

1/3 with R0 = 1.22 fm as it is traditionally approximated. We can also

use δ to consolidate the ωi notation of the deformed shell model. Using δ, we obtain [17]:

ω2
x = ω2

y = ω2
0

(
1 +

2

3
δ

)
(13a)

ω2
z = ω2

0

(
1− 4

3
δ

)
(13b)

where ω0 is the oscillation frequency of the deformed system. Since the volume of the nu-

cleus is conserved no matter its deformation, the product of its extension along all three axes

must be a constant. In other words, ωxωyωz = constant. We can then write the oscillation

frequency for the deformed nucleus as [19]:

ω0(δ) = ω0

(
1− 4

3
δ2 − 16

27
δ3
)−1/6

(14)

where ω0 = ω0(δ = 0).
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2. ε is the Nilsson quadrupole deformation parameter (and sometimes more explicitly written
as ε2). ε is closely related to δ and its existence is due solely to a slight change of notation in
the consolidation of the ωi terms [17]:

ωx = ωy = ω0

(
1 +

1

3
ε

)
(15a)

ωz = ω0

(
1− 2

3
ε

)
(15b)

With the same volume constraint, we find:

ω0(ε) = ω0

(
1 +

1

9
ε2 +O(ε3)

)
(16)

where O(ε3) is a Landau Function and signifies that, while the expansion has higher-order
terms, they are not significant compared to the explicitly written lower-order terms. The

purpose of recasting the deformation in ε is to remove an approximation from energy calcu-

lations that δ necessitates but the intricacies of this difference are beyond the scope of this
work. ε can be related to δ by [20]:

ε = δ +
1

6
δ2 +

5

18
δ3 + . . . (17)

which, to first order, implies ε ≈ δ.

3. β is the last deformation parameter and is perhaps the most conventionally defined. This pa-

rameter describes the first significant deformation level of the multipole expansion of nuclear

shape. In a multipole expansion, complex structures are broken down into increasingly com-

plex components called multipoles that are based on spherical structures. For deformations,

the sequence of multipoles goes monopole, quadrupole, octopole, hexadecapole, and so on.

Although the higher-level deformations do exist in nuclei, they are so small compared to the

lowest order deformations that neglecting them significantly simplifies our analysis without

greatly affecting the result. The full expression of the radius of the deformed nucleus is [11]:

R(θ, φ) = R0

[
1 +

∞∑
λ=0

μ=λ∑
μ=−λ

αλμYλμ(θ, φ)

]
(18)

where θ and φ are angular spherical coordinates, αk are the expansion coefficients, and

Yλμ(θ, φ) are known as spherical harmonics which apply the deformation. The λ index

determines the order of the expansion. λ = 0 is the monopole term, λ = 1 is the dipole term,
and so on. However, the first term that actually deforms the nucleus is the λ = 2 dipole term.
The monopole term is a simple change in its radius which contradicts our earlier assumption

that volume is conserved. Thus, the λ = 0 term does not exist. Similarly, the dipole term

represents the displacement of the entire nucleus which cannot exist without an external
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force. Therefore, λ = 1 is also not permitted. As such, we limit ourselves to the λ = 2 term
with the understanding that, while higher-order deformations may be present in the nucleus,

they are insignificant when compared to the quadrupole deformation. Our sum then reduces

to:

R(θ, φ) = R0

[
1 +

μ=2∑
μ=−2

α2μY2μ(θ, φ)

]
(19)

Thus, there are 5 individual α2μ components. Due to the nature of the various spherical

harmonics, α11 = α2,−1 = 0 since these terms represent translational motion that we are not
considering [7]. Accordingly, we are left with the following three coefficients which can be

written using two new parameters [11]:

α20 = β cos γ (20a)

α22 = α2,−2 =
1√
2
β sin γ (20b)

The particulars of the terms are not important beyond defining the existence of the new defor-

mation parameters β and γ. As mentioned earlier, β represents the quadrupole deformation

of the nucleus. The new parameter γ represents the triaxial deformation of the nucleus. The
interplay between quadrupole deformations and triaxial deformations will play a central role

in our argument of the nature of 160Lu. Figure 11 illustrates a systematic way of classifying

deformations in terms of β and γ known as the Lund convention.

Though γ is a fundamentally different kind of deformation than δ and ε, β can be related to

the previous quadrupole deformations by [20]:

β =

√
π

5

(
4

3
ε+

4

9
ε2 +

4

27
ε3 +O(ε4)

)
(21)

To first order, we can approximate β ≈ 1.05ε ≈ 1.05δ.

All three quadrupole deformation parameters are very similar, particularly for the small deforma-

tions we are dealing with in this nuclear region. It is important to understand that they are indeed

different quantities and are not arbitrarily defined. That being said, we will proceed with the use

of β and γ as the deformation parameters of choice in the remainder of this work.

The deformation parameters allow nuclei to be broken into two categories: deformations with

β < 0, known as oblate nuclei, and deformations with β > 0, known as prolate nuclei. Figure 12
illustrates these classifications.

As alluded to earlier, the most important result of the deformed shell model is the ability to an-

alyze the change in the energies of different orbitals as the shape (deformation) of the nucleus

changes. Figure 13 shows this phenomenon, known as Ω splitting, for a representative orbital.

Notice that when the deformation is 0, the energies of all Ω states are equal and thus the orbital is

degenerate. This type of figure is a very simplistic version of more complex figures called Nilsson
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Figure 11: The Lund Convention for nuclear deformations. β gives quadrupole deformations while
γ gives triaxial deformations. Adapted from [11].
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Figure 13: Calculations of Ω splitting in the 1d5/2 orbital. Note that at δ = 0 all alignments are
degenerate in energy. Energies were calculated using a small-δ approximation and a perturbation
to the spherical harmonic oscillator potential.

diagrams. These diagrams, introduced in Section 7, are tremendously useful in determining the

likely configuration of a nucleus at a particular energy and deformation.

One of the key concepts to understand from the Nilsson model and Figure 13 is that once the

nucleus exhibits prolate deformation (β > 0), a nucleon with low Ω can orbit that nucleus with

lower energy than it could have orbited a spherical potential [7].

3.2.2 Nilsson Quantum Numbers

Once the spherical potential has been deformed, we lose the ability to use � and j to uniquely

identify the states. Now, the orientation of the angular momentum determines the energy of the

state. This means that various nuclei could have the same total angular momentum but different

energies, and thus no longer can be discretely identified by the momenta quantities themselves.

The Nilsson orbits are traditionally labeled with a series of five quantum numbers of the form

[16]:

Kπ [NnzΛ]

1. K is the projection of the total angular momentum on the symmetry axis. It is often times

conflated with Ω, though there is a subtle but nonetheless significant distinction between the
projection of the total angular momentum (K) and the projection of the nucleon’s angular
momentum (Ω). For a variety of nuclei, particularly those at low rotational frequency, the

numerical difference between K and Ω is negligible so both quantities can serve as the first

Nilsson quantum number.

2. π is occasionally included in Nilsson labeling and refers to the parity of the orbital. Parity

is a representation of the spatial symmetry of the wavefunction. The parity operator maps

all spatial coordinates to their opposites (i.e., x → −x, y → −y, z → −z). If the resulting
function is unchanged (as x2 would be), the system is said to have even parity. If the system
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returns with the opposite sign, (as x3 would), it is said to have odd parity. When applying

the parity operator to the spherical portion of the wave function, the resulting sign goes as

(−1)� which we will take as our definition of the parity of a nuclear orbital.
3. N is the indexing quantum number and is identical to N in the spherical shell model.

4. nz is the number of nodes that the orbital’s wave function has along the z axis. In other

words, it represents how many times the function switches sign. The more nodes the wave

function has, the more it is aligned in the z direction and consequently the lower energy the
orbits.

5. Λ is the projection of the orbital angular momentum along the symmetry axis. That is, it

is the projection of �. Note that this means K = Λ + S where S is the projection of the

nucleon’s intrinsic spin.

An example would serve to better illustrate Nilsson labeling conventions. Consider the h11/2 or-

bital. Here, j = 11/2 and h orbitals are associated with � = 5. We will begin by consider-

ing the lowest energy orbit which, as we know from Section 3.2, is the most equatorial. The

most equatorial orbits have the lowest projected angular momentum, meaning that we will choose

K = 1/2.

However, the orientation of the orbit tells us about the nature of nz. At most, nz = N due to the

indexing nature of N and its constraints on the size of the wave function. But nz is effectively a

representation of how extended the wave function is along the z axis. Since we already decided to
consider the most equatorial orbit, the K = 1/2 orbit must have the greatest possible nz value, or

nz = 5. Similarly, successively higher energy N = 5 orbitals will have lower nz values.

Finally, having identifiedK and nz, we come to Λ. Again, Λ = K ±S which leaves us with either

1 or 0. However, there is one further constraint of Λ. In order to preserve the parity of the orbital
(since mixed-parity wave functions are impossible), the quantity nz + Λ must match the parity of

N . If N is an odd number (as it is here), the quantity nz + Λ, too, must be odd. This necessitates
Λ = 0 and thus for this example we have:

Kπ [NnzΛ] = 1/2− [550]

3.3 Pairing Effects

There is a substantial amount of experimental evidence supporting the idea that nucleons pair

within the nucleus [7]. Perhaps the biggest hint at this phenomenon is the observation that the

ground state of all even-even nuclei has spin (J) and parity (π) Jπ = 0+. In order for these states
with an even number of nucleons to have zero total angular momentum, the angular momenta

of the nucleons must cancel out. Further, it is observed that the binding energy increases when a
nucleon is added to make the nuclei even-even. More of the added mass of the nucleus is converted

into binding energy when the even-even state is reached than when an odd-A state is reached. This

implies some additional attractive force between even numbers of particles that is less present in

odd-A nuclei.
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We imagine the pairing force to be the interaction of two nuclei in an orbit with a given j and
|Ω|. However, since two particles cannot simultaneously occupy the same orbital, they must be
traveling about the nucleus in opposite directions (that is to say, one with +Ω and one with −Ω).
We say that such nuclei are in time-reversed orbits. Thus, the total angular momentum of the pair

of nucleons is necessarily zero since each nucleon has the same j but the opposite direction of
motion.

To adopt this view, we must qualify the previous line of reasoning that yielded the conclusion

that inner-shell nucleons do not collide. Because they are physically restricted to their respective

orbitals but traveling towards each other, the nucleons will inevitably collide and attempt to scatter

into other orbitals. The central tenet of this view of pairing is that the colliding nucleons are just

as likely to scatter back into their original orbit as they are to scatter into nearby orbitals. If this

were not true, we would expect that the energy to create a two-particle excited state in an even-

even nucleus would be at least twice as great as the energy required to create a one-particle state

in a neighboring odd-A nucleus. As it turns out, the difference in energy is much greater for an

even-even nucleus—up to 10 times as great [16]. The underlying cause is the pairing interaction

between nucleons which must first be broken (typically requiring ≈ 2 MeV of energy) before the

individual nucleons can be excited.

Thus, the existence of the pairing interaction requires us to completely alter our understanding of

the energy structure of the nucleus. But first, a brief introduction to the vocabulary of statistical

mechanics is necessary. In the quantum mechanical realm, states are quantized, meaning that they

take on discrete values. Each state has a certain energy associated with it, and consequently a

certain probability of being observed. Multiple states can sometimes achieve the same energy

though the nature of the states themselves are quite different. This is the concept of degeneracy as

was presented in the context of the shell model.

When we imagine a system from the macroscopic level (at the scale of the entire nucleus) rather

than the microscopic level (that of an individual nucleon), we see a collection of successively

higher energy levels. The term Fermi surface (also, Fermi level) is applied to the highest occupied
energy level. Excitations of the system can promote nucleons occupying lower states into states

above the Fermi surface, but doing so requires energy beyond the “resting” energy the system

possesses.

Instead of imagining an energy structure with occupied states up to the Fermi surface and entirely

unoccupied states above it, we must envision a series of partially occupied states, though increas-

ingly less so, from the ground state all the way up to the most excited state due to the presence

of the pairing interaction. The scattering behavior of the nucleons allows for a general mixing of

wave functions of the lower states. These states are no longer strictly filled or unfilled, but rather

are in some state of being partially filled. The energies required to more fully populate a partially

full state are less than those required to populate empty states, which is the driving force of the al-

teration of the energy structure. Figure 14 illustrates the nature of these partially-filled levels. With

this understanding of the statistical mechanics of the nucleus, we now recognize that the mid- and

upper-levels of the nucleus are not populated by particles and “holes” (created by the lack of a

particle), but rather by some intermediate state known as a quasiparticle (QP) [7].



25

Without Pairing With Pairing

Figure 14: A visual depiction of the filling of energy levels in a system with (right) and without

(left) pairing. The amount of shading indicates how filled a given level is. Note on the left graphic,

all states are filled below the Fermi level while on the right, all states are partially filled. Adapted

from [11].

3.4 Cranked Shell Model

There is one final adjustment to our model of the nucleus necessary to specifically address some

of the physics related to analyzing rapidly-rotating nuclei. The missing component is the angular

momentum of the entire nucleus, as generated by the heavy-ion reaction. We can include it rather

directly by building upon the deformed shell model and adding a rotational component to the

model. To do so, we must shift our data from the stationary reference frame of the laboratory into

the rotating frame of the nucleus. We apply the following coordinate transformation:

x′ = x (22a)

y′ = y cos(ωt) + z sin(ωt) (22b)

z′ = −y sin(ωt) + z cos(ωt) (22c)

Which subsequently introduces a slight modification to our deformed shell model Hamiltonian and

yields the Hamiltonian for the cranked shell model (CSM) known as the Routhian:

H ′ = H − ωJx (23)

where ω is the rotational frequency of the nucleus and Jx is the angular momentum operator along

the x axis.

Referring to Figure 9, note that the x axis is perpendicular to the symmetry axis (z axis). The term
“symmetry axis” is not used in the classical sense of an axis on either side of which the object

is identical. Rather, the symmetry axis is an axis around which spin is not possible. Consider a
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floating metal sphere that is both perfectly round and perfectly polished to a mirror finish without

blemishes or imperfections. As the sphere is observed, there is no possible way to determine if it

is spinning or not. No matter whether it is stationary or rotating around any coordinate axis, the

surface area it presents will always perfectly reflect its surroundings. Under the rules of quantum

mechanics, if it is not possible to directly observe an event, it is impossible for that event to occur.

As such, any object possessing a symmetry axis cannot exhibit rotation about that axis [18].

Beyond this, if we define both of the mutually perpendicular x and y axes, we cannot say for certain
about which the nucleus will rotate. However, we have the freedom to select our own coordinate

system and therefore can arbitrarily define rotation to occur about the x axis. Thus, we employ Jx
and not Jy. Regardless, rotations about Jx or Jy are identical. Since we could not distinguish a
rotation about Jx from one about Jy, our choice truly is at our discretion.

By this point in our increasingly complex picture of the nucleus, we have all but exhausted analytic

means of studying our models. The CSM requires numerical solutions, though a description of the

approaches necessary to run CSM calculations is far beyond the scope of this work. However, we

will discuss the implications of the additional ωJx term that is now exerted on the nucleus.

3.4.1 CSM Quantum Numbers

Now that the Routhian is time dependent, we lose the ability to use momenta or projections of

momenta of any sort as quantum numbers since the values are constantly changing. As such, we

are left with two good quantum numbers in the cranking model:

1. Parity (π), as before, remains a valid quantum number reflecting the spatial invariance of the

Routhian.

2. Signature (α) is a quantity that arises from the symmetry of the Routhian about the x axis.

Since we arbitrarily defined the rotation of the system to occur about the x axis, this symme-
try arises naturally. The rotation operator is defined as Rx = e−iπJx . The application of this
operator yields a rotation of 2π which means that systems with even mass numbers (A) are
unaffected while systems with odd mass numbers reverse sign. Thus, we have:

R2
x = (−1)A (24)

When applying operators to wave functions, the phrase “eigenvalue” is often used to describe

the result. An eigensystem is a system in which there is an operator (such as the momentum

operator) which, when applied to some function (in our case a wave function describing a

state), yields that same function multiplied by a constant value. The value that results is the

eigenvalue.

The eigenvalue of the rotation operator is the signature quantum number and can be written

as:

r = e−iπα (25)
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Label Designation (π, α)n

A (+,+1/2)1
B (+,−1/2)1
C (+,+1/2)2
D (+,−1/2)2
E (−,−1/2)1
F (−,+1/2)1

Table 1: Notation for CSM quantum numbers. The n subscript refers to the sequential energy

levels of each set of orbitals. n = 1 is the lowest orbital, n = 2 the next highest, and so on.

For the integer spin of a given state J , we have

r = (−1)J (26)

which produces a variance in the signature for even and odd spins as follows:

r = +1 (α = 0) for J = 0, 2, 4, . . . }
For even−A nuclei

r = −1 (α = −1) for J = 1, 3, 5, . . .

r = −i (α = +1
2
) for J = 1

2
, 5
2
, 9
2
, . . . }

For odd−A nuclei
r = +i (α = −1

2
) for J = 3

2
, 7
2
, 11

2
, . . .

Though r is technically what the word “signature” refers to, it is far more common to employ
α and its associated values to describe signature, so that convention will be continued in this

work.

We will frequently encounter a method of consolidating these quantum numbers into single-letter

abbreviations for various unpaired particles [21]. This notation is summarized in Table 1.

3.4.2 Coriolis Effects

The Coriolis effect or the Coriolis force is most traditionally discussed in the context of deflections

of the trajectory of projectiles on Earth. If we consider a rocket launched from the equator on a

trajectory due north, it will not only have a northward velocity due to its intended trajectory, but it

will also have a component of eastward velocity that the easterly rotation of the Earth gives it upon

launch.

However, the surface of the Earth does not rotate at a uniform velocity at every latitude. Since the

entirety of the Earth completes one rotation per day and a point on the equator is physically farther

from the rotational axis than a point in Alaska, the former point must have a greater velocity than

the latter in order to complete a larger rotation in the same amount of time.

Though this easterly component of velocity is negligible over short distances (since it is irrelevant

as long as the rocket is interacting with portions of the Earth with equal angular velocities as the

launch site), as the rocket progresses North, it will begin to travel in regions where that angular
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FCor

FCor

Figure 15: Diagram of the forces exerted on two nucleons in time-reversed orbits.

velocity is considerably less. At the equator, where the angular velocity of the Earth equals the

angular velocity of the rocket, the rocket could travel North unaffected. However, once it reaches

substantially higher latitudes, its angular velocity becomes much greater than that of the Earth

beneath it. Accordingly the rocket appears to begin to travel to the East and its overall trajectory

appears to be deflected clockwise (to the right) of its intended path. See Figure 15 for an illustration

of this effect.

The force that generates this deflection is called the Coriolis force and is present whenever mov-

ing objects are analyzed within a rotating reference frame. The magnitude of the force is given

by:

FC = −2mΩv × v (27)

where m is the mass of the object, v is its velocity, and Ωv is the overall angular velocity vector

of the reference frame. × represents the vector cross product between Ωv and v and returns a

mutually perpendicular vector (since the resulting Coriolis force indeed acts perpendicularly to

these two vectors).

Since this force does apply to any moving object in any rotating reference frame, it surely applies

to nucleons orbiting a spinning nucleus. In fact, the ωJx term of the Routhian is the origin of this

effect in the nucleus. Upper limit calculations on the strength of the Coriolis force in the nucleus

reveal that it can be on the order of the spacings between energy levels of the uncranked nucleus.

Clearly, we cannot ignore its effects.

The Coriolis force acts to alter the nucleon’s trajectory about the nucleus, which can more correctly

be thought of as a “tipping” of the orbit’s angular momentum. The net result is that the Coriolis

force changes the nucleon’s Ω. These changes to the projections of the orbitals cause combinations
of these states to occur, a phenomenon known as admixing. Coriolis mixing’s effects on nucleon

orbits will be discussed later.

Perhaps one of the most consequential outcomes of the Coriolis force is the Coriolis anti-pairing

effect (CAP). As mentioned in section 3.3, there exists an energetically-favorable pairing interac-

tion between nucleons in time-reversed orbits. Since these orbits have opposite values of Ω, the
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Figure 16: Aligned angular momentum (or alignment) versus rotational frequency for 162Hf.

Coriolis force will yield an opposite force on each particle. The magnitude of the force is depen-

dent both on the j of the orbital and the overall rotational velocity of the nucleus (ω), but in general
the CAP acts antagonistically to the pairing effect.

In general, we can predict energy levels of the excited bands by approximating the nucleus as a

rigid rotor, meaning that it spins as if it were a solid object. For a rigid rotor, the energy of a

nucleus with a given spin (rotational velocity) J is:

EJ =
h̄2

2�J(J + 1) (28)

Where � is the nucleus’ moment of inertia, a representation of how its mass is distributed and how

difficult it is to spin. Thus, as the nucleus is spun increasingly rapidly, we expect the energy of its

levels to increase as J(J + 1).

However, at sufficiently high spins, the Coriolis force can become strong enough to overwhelm

the pairing interaction and decouple, or break apart, the nucleon pairs. In essence, the nucleus

enters a regime where it is more energetically favorable to forgo the pairing interaction and create

a two-quasiparticle state than it is to continue to excite the coupled nucleons. As a result, the

nucleus can gain angular momentum while slowing its rotation. The angular momentum gained

by breaking apart the pairing of two particles allows for this gain in overall spin while slowing

rotation. Figure 16 shows this effect near a rotational frequency of 0.3 MeV in 162Hf, plotting the

aligned angular momentum from unpaired quasiparticles versus rotational frequency. The dramatic

increase in angular momentum accompanied by a decrease in rotational frequency is known as

backbending or a band crossing in the nucleus. As this happens, the nucleus can gain (2j − 1) h̄
of angular momentum at the energy cost of twice the mass difference stemming from the loss of

paired binding energy [22]. Thus, we typically see such band crossings for the highest j orbitals
in the nucleus.
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3.4.3 Band Crossings

We are able to employ CSM calculations to determine the energies of quasiparticles in various

orbitals as the rotational energy (h̄ω) of the nucleus increases. Using such plots, it is possible to
predict where these band crossings will occur. We will use Figure 17, showing the Routhians for

neutron quasiparticles in 162Hf, to further elucidate the nature of band crossings. In doing so, we
can compare these theoretical predictions with the observed data presented in Figure 16.
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Figure 17: Quasineutron energies vs. rotational energy of 162Hf. Accordingly to conventional

labeling practice, several trajectories have been labelled as well as the locations of three prominent

crossings. Deformation parameters employed in our calculations were β2 = 0.16, β4 = −0.01,
and γ = 0 [23].

Only a select few Routhians are displayed in Figure 17 to aid in the understanding of the signifi-

cance of each line. The terms “Routhian,” “trajectory,” and “orbital” can all be used interchange-

ably to refer to these lines. As presented earlier, each quantum number configuration is assigned

a letter label as indicated on the figure (see Table 1 for a summary of this notation). Further, the

y = 0 line corresponds roughly to the Fermi surface within the nucleus. Of course, the Fermi

surface is not so discretely defined, but it serves a useful purpose in distinguishing energy levels

that are predominantly full from those that are predominantly empty. Note that the positive-energy

orbitals all have a corresponding negative-energy orbital with the same parity but the opposite sig-
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nature known as conjugate orbitals. These are labeled with a “−” prefix. The −A orbital is the

mirror image of the A orbital, but with the opposite signature.

One of the fundamental principles behind using such diagrams is the premise that each orbital is

either filled with a quasiparticle (QP) or a quasi-“hole”—the absence of a quasiparticle. Moreover,

each pair of orbitals (A and −A, B and −B, and so on) may only hold one QP. Thus, if there
is a QP in A, by definition there must be a hole in −A. 162Hf is a convenient starting point for

simplicity as it has no unpaired particles in its ground state.

Returning to our understanding of the Fermi level as the designation of where the levels are 50%

filled, any unpaired particles must by definition lie above the Fermi level. From this, it follows

that all of the positive-energy orbitals we see in the diagram are empty except for ones that hold

unpaired neutrons. Consequently, all of the negative-energy orbitals are full for an even-even

nucleus like 162Hf.

It is critically important to realize that the trajectories of each orbital do not map to the continuous

lines on the diagrams, but rather the slopes of the lines. For instance, examine the beginning of

the A trajectory. The black solid line represents the A orbital up until ≈ 0.28MeV at which point

there is an inflection. The A orbital continues on the lower black line which formerly was the −B
orbital. Then, this new line continues to represent the A particle until the next inflection point,

where A jumps to the next discontinuous (+,+1/2) line. These inflection points are doubled as
each conjugate pair of orbitals will interact with its respective conjugate pair.

Consider the situation of 162Hf, an even-even nucleus with no unpaired particles. As we have

demonstrated, this means that all of the negative-energy trajectories are populated, and all of the

positive-energy trajectories are populated with holes. Following the −A trajectory up as rotational

energy (or frequency) increases, we come to the inflection point between −A and B. The QP will
naturally attempt to place itself in the lowest energy state available to it. At the inflection, the

QP has two choices. It could transition into the downsloping B orbital, or it could remain in the

upsloping −A orbital. The lowest energy option is clearly to make the B transition such that now

a QP exists in the B trajectory and a quasihole exists in the −A trajectory. This is called the AB
band crossing.

Now consider an odd-A nucleus that has a single unpaired neutron. We will assume this neutron

is located in the A trajectory. Again, by definition, this implies that −A has a hole. Now, when

the particle in the upsloping −B trajectory approaches the AB interaction at ≈ 0.28 MeV, it

encounters a quasiparticle in the upsloping −B trajectory. The particle has nowhere to go in the

new orbital and is forced to continue along the upsloping −B trajectory. In this situation, we say

that the AB crossing is blocked. However, as we continue to follow the −B trajectory to higher

frequencies, there is another inflection with the C orbital that is not occupied. Therefore, the −B
quasiparticle will transition to the downsloping C orbital, which is called the BC crossing. Note

that the −C and B trajectories undergo the same effect.

We will continue to make use of these diagrams and the CSM to interpret our experimentally

observed band crossings.
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4 Experiment

To begin this analysis, the 160Lu isotope of interest must be generated. The primary method for

producing isotopes for nuclear structure research is a heavy-ion reaction. For this experiment,

high-spin states of 160Lu were populated using the reaction:

45
21Sc +

120
50Sn→ (165−x)

71Lu + x · 10n

The general overview of this a reaction is given in Figure 18, with the individual steps outlined

below. In this reaction, a beam consisting of heavy-ions (45Sc) is accelerated and directed towards a

target of nearly pure isotopic material (120Sn) (Stage 1). Due to the immense energy of the particle

beam in the accelerator, the ions have enough energy to overcome the repulsive Coulomb force

between themselves and the target. When the ions collide with the target isotope, an intermediate

state is formed which is a hybrid of both the incident ion and the target isotope (Stage 2). The

resulting nucleus will then give off a number of nucleons (in this case, all neutrons) to quickly

reduce its excitation energy (Stage 3).

The beam will very rarely strike the target nuclei at their center of mass and thus will create large

amounts of angular momentum in the compound nuclear system. This process is much the same

as giving a cue ball english in billiards. If the cue strikes the ball at its center, the ball will travel

directly away from the cue. However, if the cue strikes the ball anywhere else, the ball will begin

to rotate with non-zero angular momentum as it moves away from the cue. After the nucleus is

placed in this rotating excited state, it will seek a lower energy state by losing energy through the

emission of gamma rays (Stage 4). Finally, the nucleus reaches its ground state in which it has

no excitation energy (Stage 5). The entire process is very quick; it takes place over roughly 1

nanosecond.

The reaction diagram indicates that the heavy-ion reaction will produce various nuclei as products

depending on how many nucleons are released after a given collision. This is entirely probabilistic,

and eventually the sum-total of data seen by Gammasphere must be partitioned by nucleus before

it can be meaningfully analyzed. The fact that such a variety of information is produced by the

experiment allows many collaborators to analyze different phenomena in different nuclei without

redundancy. Indeed, the data from this experiment will be distributed among a variety of research

teams, with this project specifically looking at the resulting 160Lu data. Although separating the
160Lu data from the rest may seem daunting, work has already been done in identifying some of

the gamma energies associated with 160Lu.

The data was collected over 3 days in March of 2014. The 45Sc beam ran at an energy of 215 MeV.

The 120Sn target consisted of a back-to-back stack of two individual targets, one≈ 500 μg/cm2 and

the other ≈ 600 μg/cm2.

In order to capture as many gamma rays as possible while using small detectors, this project uti-

lized Argonne National Laboratory’s (ANL) Gammasphere—an array of over 100 small, Compton

suppressed HPGe detectors arranged into a sphere. Such a large number of detectors is crucially

important for this work, as the decay bands that are being studied are very rarely produced by the

heavy-ion reaction.
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Figure 18: Steps of the Formation of a Compound Nucleus in a Heavy-ion Reaction. Adapted

from [11].
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5 Data Processing

Though a thorough analysis of the data is the crux of this experiment, preliminary data processing

requires a significant amount of work. A number of data-correction steps must be taken before the

analysis can begin.

5.1 Detector Calibration

The first step was to calibrate the detectors. The detectors in Gammasphere register the presence

of a gamma ray as a burst of voltage read by an analog-to-digital converter (ADC). Essentially,

this is the hardware that allows the data to be digitized by translating the voltage produced in the

semiconductor into a digital signal. The key for analysis is to convert the ADC voltage (referred to

as a channel number) to a meaningful energy corresponding to the energy of the original gamma
ray. To perform the calibration, a set of data was taken with 152Eu and 182Ta sources. These

particular isotopes have very well-measured energies over a large range (100 keV - 1400 keV). By

comparing the channel number given by the ADC to the expected energies of various 152Eu gamma

emissions, an equation translating the channel numbers into energies can be determined. Figure 19

shows the peaks of a 152Eu with the correct energies overlaid.
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Figure 19: Spectrum of a 152Eu source for detector calibration. Note the difference between the

energies (given in units of keV) labeled on the peaks and the corresponding position of the peak

on the x axis. The difference is the conversion of a channel number to an energy, and can be

determined with Equation 29.

After sorting the data from the calibration runs, the calibration spectra were loaded into a spectrum

analysis program called gf3 [24]. The program displays the counts versus the channel number of

the gamma rays, as shown in Figure 19. Using the peak-marking feature to identify the channel of

the known peaks of the two isotopes in question, we could then match the channels to the known

energy associated with particular peaks. The result of this, combining both 152Eu and 182Ta data,

produces a nearly linear equation that allows for the conversion of channel number into an energy.

Using a least squares fitting routine, we determined this equation to be:
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E = −4.89× 10−7x2 + 6.68× 10−1x− 6.44× 10−1 (29)

where E is the energy of the gamma ray and x is the channel number read by Gammasphere.

5.2 Efficiency Correction

The second correction was to account for the fact that the Gammasphere detectors cannot detect

all energies of gamma rays with the same efficiency. Gamma rays with higher energies typically

Compton scatter multiple times before they are fully absorbed. The greater the number of scatter-

ing events that occur, the greater the likelihood of that gamma being scattered out of the detector.

Thus, the detectors typically have a greater efficiency for lower-energy gamma rays. In order to

ensure that the observed intensities are representative of the actual intensity, it is necessary to ac-

count for this efficiency effect. Just like the calibration, the correction of gamma-ray efficiency can

also be done through an analysis of well-studied sources. Here, we again used 152Eu and 182Ta.

The intensities seen by Gammasphere can be compared to the known intensities and taken as a

ratio to determine the relative efficiency, Iobserved
Iknown

.

Figure 20 shows a plot of the relative efficiencies of a number of 152Eu and 182Ta peaks. Two

second-order fits of these relative efficiencies were taken over all energies, and then combined

to produce the solid line that runs through the points. The equation for this line can be used

to interpolate the efficiencies at all energies seen by the detector, and to correct under- or over-

represented intensities accordingly.
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Figure 20: Relative efficiency plot and fit for 152Eu and 182Ta sources.

At this point, we are ready to combine all the individual runs of the experiment into a collective

file to ease further analysis. The code that performs this task is called BLUE, so the resulting file
is referred to as a BLUE database [25]. As the code parses the input files, it sorts all the individual
events that the gamma ray detectors observed into coincidence windows. That is, it creates a

grouping of all the gamma rays that were seen simultaneously by 3 detectors, 4 detectors, and so
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on, up to 15 detectors. For the purposes of this work, “simultaneously” means the events occur

within the same 80 ns coincidence window.

5.3 Doppler Correction

With the created BLUE database, we can now account for the third correction—the Doppler effect.

Due to the extremely thinness of the target, the heavy-ion reaction forces nuclei to leave the target

when they are struck. Consequently, the compound nucleus of the reaction is moving while it is

emitting gamma rays. Since Gammasphere’s detectors are located in rings around the reaction

chamber, rings of detectors which are not perpendicular to the beam direction will experience

Doppler shifted energies.

Although, as a whole, the impact of broadening the gamma-ray peaks due to the Doppler effect

was minimized by using a large number of small area detectors, the position of the peaks will still

be affected since the detectors are mounted at different angles with respect to the target. Thus, the

detectors will still observe a Doppler shift that will have a significant impact on the data if it is

not corrected. To apply the correction, the orientation of each detector with respect to the source

must be considered. Gammasphere’s rings are mounted at fixed angles from the target. Since it

is known that the ring placed at 90◦ will not have any Doppler shift, the shifts in gamma energies
seen in the spectra of other rings can be compared to this 90◦ reference and consequently can be
shifted accordingly to the correct energy.

Figure 21 shows the effect of the Doppler shift on a number of different rings. The 90◦ ring is
shown in the middle, with forward angles on the top of the figure and backward angles on the

bottom. Here, “forward” refers to detectors that are in the direction of the incident beam nucleus

on the far side of the target and “backward” detectors are those on the side of the target near

the source of the incoming beam nucleus. Reference lines are drawn through a few peaks in the

90◦ plot. Note that as the angle increases, the difference in the channel number of the gamma

ray increases. That is to say, detectors in rings behind the 90◦ ring record lower energies, while
detectors in rings in front of the 90◦ ring record higher energies. This shift is analogous to the more
familiar sonic Doppler shift of a passing train. If one stands in front of a train as it approaches, the

sound of the train’s whistle will have a higher tone (frequency) than it actually emits, just as the

energies seen by detectors in front of the passing nucleus see higher energy gamma rays than what

are actually emitted.

The magnitude of the Doppler shift depends on the velocity of the nucleus, expressed as β = v/c
where v is the velocity of the nucleus and c is the speed of light. By making a measurement of β,
we can determine how much correction needs to be applies to the various angled rings of gamma

ray detectors. The energy of the gamma ray seen by a detector at some angle theta from the reaction

plane is given by

Eγ = E0[1 + β cos(θ)] (30)

where Eγ is the Doppler shifted energy, E0 is the correct energy, and θ is the angle of the detector
ring.
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Figure 21: Doppler Shifted Channel Numbers for 160Yb over a range of detector angles. From top

to bottom, 17.3◦, 69.8◦, 90.0◦, 110.2◦, and 148.3◦. Note that the middle plot of the 90◦ detector
represents the “true” channel numbers.



38

17.8624 x	 730.474

�1.0 �0.5 0.0 0.5 1.0
710

720

730

740

750

cosine�Θ�

E
ne

rg
y
�k

eV
�

Figure 22: Graph of the progressively Doppler-shifted channel numbers of a gamma ray over all

detector rings. Note that the slope is equal to 17.86 with E0=730.474. This implies that, for this

measurement, β = 0.0244 as discussed in the text. The final value of β used in the rest of the work

was obtained by averaging many such measurements.

Thus, making a plot of the Doppler shifted energy versus the cosine of the detector angle will

produce a line with a slope of E0β and intercept E0. This graph is shown for a gamma ray with

channel number equal to 730.4 in Figure 22. We created numerous such graphs for 13 gamma rays

across all detector array angles and averaged β = 0.0255. That is to say, on average, the nuclei
were traveling at 2.55% of the speed of light. Now that β is known, the peaks can be shifted to

their correct values on an event-by-event basis.

Finally, after preparing the data, we must parse the BLUE database into a data cube. The cube is

merely a data construct that allows us to identify gamma rays that occur in coincidence with other

gamma rays. As will be discussed in the following section, this technique is central to identifying

the decay scheme of the nucleus.
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6 Level Scheme

6.1 Level Scheme Theory

If a ball is placed on top of a hill, it is naturally in an unstable state. Although it may initially be at

rest, it will eventually roll down the hill—though it is impossible to say exactly which path down

the hill it will take. All that is known is that it will start at the top of the hill and end at the bottom.

This physical analogy translates to the nuclear realm, as an excited nucleus will want to lose energy

and seek a lower energy state, though it is not possible to say with certainty how it will do so. In

this experiment, the nuclei involved will decay by emission of gamma rays, and it is generally

possible to trace the decay “path” the nucleus takes by observing these emitted gamma rays. Much

of the theory of this project is built upon constructing and interpreting what is called a level scheme
as the result of the data collection, so it is necessary to gain a preliminary understanding of how a

level scheme represents the different decay paths the nucleus can take.

In total, 160Lu has 160 nucleons—71 protons and 89 neutrons. Whenever possible, nucleons like

to form pairs. As 160Lu has an odd number of both protons and neutrons, it is impossible for every

proton and every neutron to be in a matching pair. As such, every 160Lu nucleus will have at least

one of each of these particles unpaired, but which nucleons are left unpaired varies. Just as an

atom has many different electrons that exist in different orbits and energy levels, so too does the

nucleus have protons and neutrons that exist in different energy states. As we have seen, nuclear

physicists borrow nomenclature from chemists to describe these protons and neutrons, and so they

are labeled based on their “orbital” (s, p, d, and so on) and their spin (always an integer multiple

of 1/2) [7].

The different possible unpaired nucleons lead to different “flavors” of 160Lu that all have a unique

decay sequence associated with having these particular nucleons unpaired. Leaving different nu-

cleons unpaired affects the behavior of the nucleus at higher energies, and consequently the path

the nucleus will take down the metaphorical hill to reach a lower energy state. Since different

configurations of the nucleus result in different decay paths, it is possible to identify which nucle-

ons are unpaired based on the patterns of energy loss the nucleus displays. These decay paths are

revealed in the energies of the gamma rays that are emitted. The resulting information is then com-

piled in a level scheme, which identifies which gamma emissions are associated with transitions

between higher energy states and lower energy states.

Figure 23 shows a small portion of the generally well-established level scheme of a different iso-

tope, 161Lu [3]. Each horizontal line represents a certain energy level the nucleus can exist at and

is labeled to the side with the amount of spin associated with that state (39/2 h̄, 7/2 h̄, etc.). In
between horizontal lines are vertical lines that represent the decay of the higher spin state to the

lower spin state through the emission of a gamma ray. The emitted gamma ray has an energy in

keV equal to the number the vertical line passes through. Finally, some decay sequences transition

into other branches, many of which ultimately feed into the ground state, or lowest energy state
of the nucleus. These linking transitions (called such because they are transitions that link decay

sequences) are indicated by diagonal lines. As a general idea of how different unpaired nucleons

affect the decay sequence, Band 1 in Figure 23 is due to the unpairing of the h11/2 proton, while
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Figure 23: Excerpt of the level scheme for 161Lu. The different bands are due to different configu-

rations of the nucleus resulting from differing unpaired nucleons [26].

Band 5 results from the unpairing of the i13/2 proton. By detecting the order and grouping of the

gamma rays, an overall picture of how different configurations of 161Lu decay from higher energy

levels can be obtained.

The process of creating such a level scheme has been greatly simplified in recent years. In par-

ticular, the RADWARE suite of applications developed by David Radford of Oak Ridge National

Laboratory has become an essential toolbox for physicists studying nuclear structures [24]. RAD-

WARE’s applications have a wide range of capabilities, but this project will specifically use the

suite to analyze the coincidence cube, construct the level scheme, and plot parameters of the nu-

cleus, among other tasks.

The steps involved in using the data cube to build a level scheme are shown in Figure 24. Panel

A shows the raw spectrum of all gamma rays seen by the detectors. The plot shows the counts

the detectors see as a function of the energy of those gamma rays, with higher spikes indicating

stronger gamma rays. The first task is to take a gate on a particular energy of gamma ray. The

word gate is used because the process of looking at a single gamma ray’s coincidence window

narrows the data set, much as passing it through a gate of a given width would do. In the case

of Figure 24, the first gate was taken on the 265-keV gamma ray. Panel B shows the result of
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this gate. Note that many of the gamma rays that were present in A disappear after taking the

gate. This is because gating on 265 keV will only display gamma rays that were detected in the

same coincidence window as the 265-keV gamma ray. The gamma rays that disappeared (for

instance, the unlabeled 227-keV gamma ray in panel A must have been part of a different decay

sequence.

However, this process is not limited to looking at the coincidence windows of a single gamma ray.

It is possible to gate on more than one gamma ray energy at once in order to obtain greater clarity

and detect even weaker patterns. However, the cost of this clarity is fewer overall statistics as seen

in the decreasing intensity of the peaks. Panel C is the result of gating simultaneously on both the

265-keV gamma ray and the 756-keV gamma ray. Thus, C shows the gamma rays that were in the

same coincidence windows of both gamma-ray energies. The more gates that are added together,

the higher the likelihood of the remaining gammas being part of the same decay sequence is. In

fact, after numerous gates it is possible to directly read the decay sequences of stronger bands

from the spectrum. The sequence on the right of Figure 24 shows the resulting portion of the level

scheme the information in these spectra provides.
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6.2 Level Scheme of 160Lu

The bulk of the initial work on this project involved piecing together the level scheme for all of

the nuclei present in the data stream. Level schemes of various degrees of completion are already

known for these nuclei, but due to the increased sensitivity Gammasphere offers, there is a chance

to greatly expand on previous work. Figure 25 shows a sample spectrum of transitions within the

the πh11/2 ⊗ νi13/2 band of
160Lu used to construct this level scheme. The starred gamma rays are

previously-known transitions, while the peaks labeled to the right are evidence for the extension

to the level scheme proposed in this work. Figure 26 shows the entire proposed level scheme for
160Lu constructed using spectra such as that shown in Figure 25. The boxed sections denote new

additions to the level scheme not present in prior publications [3, 27, 28]. Bands 1-3 are three

different configurations of the 160Lu nucleus which will be analyzed further Section 7.
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Figure 25: Example spectrum of the πh11/2 ⊗ νi13/2 band of
160Lu. Spectra such as this one were

used to construct the level scheme. The starred transitions were previously known. Note the higher

energy peaks on the right side of the plot which are high-spin transitions within 160Lu that had not

been seen before.

Note that, compared to the level scheme in Figure 23, the spins of the levels in Figure 26 are

whole-integers rather than half-integers. This marks the difference between the odd-odd 160Lu

nucleus and the odd-even 161Lu nucleus. Since 160Lu has an odd number of both neutrons and

protons, there are at a minimum two unpaired particles. Since each particle has half-integer spin,

the combination of two of these unpaired particles results in whole-integer spins.

Gamma rays, being a kind of electromagnetic radiation, can be classified by the polarization and

orientation of the associated electric and magnetic fields. As discussed in Section 7, this classifi-
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cation is useful in uniquely identifying configurations. The most commonly encountered classi-

fications are electric quadrupoles (E2) and magnetic dipoles (M1) which are categorized by their

interactions with matter and the pattern of emitted radiation. The nature of each type of transition

manifests itself in the level scheme as changes in the parity of the band, which reflects the behavior
of the wave function of the particle under spatial inversion, and changes in spin. An E2 transition

changes spin by 2 but does not affect parity, and an M1 transition changes spin by 1 without chang-

ing parity. As such, in Figure 26 the E2 transitions are indicated by vertical lines (since parity does

not change within a band) and M1 transitions are indicated by diagonal lines that connect bands of

the same parity. Less frequently, there are linking transitions connecting bands of opposite parity.

These transitions have an electric dipole (E1) nature.
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7 B(M1)/B(E2) Ratios

7.1 Theory

Excited states in nuclei have a variety of possible ways in which they can decay. The desired result

is simply decreasing the excitation energy and spin, and any given state of a nucleus has a myriad of

ways in which it can reach some state of lower energy. While any decay that is physically possible

does indeed occur, the distribution of outcomes is governed by statistical likelihood—decays that

are the most energetically favorable are the most likely to occur. Which decays are favorable is

determined in large part by the configuration of the nucleus. That is to say, which particles are

unpaired affects how the nucleus decays.

The mathematical representation of which decay mechanism is favored is called a branching ratio,
or λ. The branching ratio is simply the ratio of the probability, expressed as a percentage, that a
decay of a certain type happens to the total number of nuclei that decay. As an example, if the

branching ratio for decay type A is 0.75, then out of 100 nuclei that have decayed, 75 of them

decayed by type A.

When attempting to identify the configuration of the nucleus, particularly the new bands identi-

fied in the present work, it is particularly useful to define a related quantity called the reduced

transition probability ratio, B(M1)/B(E2). Experimental values of the B(M1)/B(E2) ratio at each

level of a decay sequence can then be compared to theoretical values calculated for a given nuclear

configuration. The comparison of which configuration produces theoretical results most like the

experimental results yields a reliable estimate of the actual configuration of the band.

7.2 Experimental Data

Experimental measurements of the B(M1)/B(E2) ratio were made by carefully selecting gates that

returned the emissions of the level of interest without introducing extraneous data. This is accom-

plished by taking a gate with at least one gamma ray that is above the level for which the ratio

will be calculated. Typically, these gates were the M1 transition out of the level above the level of

interest and the M1 transition into the level of interest. This eliminates extraneous data from linked

bands that feeds into the level in question. When this gate did not yield sufficient counts for the

measurement, a gate consisting of a list of lower M1s with one of the M1s above the level usually

produced an acceptably clean spectrum.

The B(M1)/B(E2) ratio was calculated for each efficiency-corrected spectrum by analyzing the

area of the E2-transition peak and the M1-transition peak. After the energy and area of each peak

were measured, the ratio follows from [18]:

B(M1)

B(E2)
= ln 2 · Eγ(E2)5

Eγ(M1)3
· 1
λ

(31)

where λ = Iγ(E2)

Iγ(M1)
and uncertainties were propagated using partial derivatives.
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Such measurements were made using gf3, an analysis tool within RADWARE, for multiple levels
in each strongly-coupled decay band of 160Lu. In theory, the B(M1)/B(E2) ratio should show a

trend throughout the decay sequence. As seen in Figure 27, the values typically centered around

definite values and are certainly distinct enough to tell each configuration apart. The plots in

Figure 27 show the B(M1)/B(E2) ratio versus spin for a variety of states in each band. Error bars

are applied to reveal the confidence of each data point. Outliers aside, Band 1 values tend to be

just under 2 (μN

e b
)2 and decrease with increasing spin, Band 2 hovered around 3.5 (μN

e b
)2, and Band

3 stayed near 2.5 (μN

e b
)2 for most spins.

These values were calculated using experimental data. Wemust compare these results to theoretical

calculations, shown as solid lines in Figure 27 to determine which unpaired particles exist within

the various configurations.

7.3 Theoretical Calculations

In order to identify the configuration of the nucleus that a given B(M1)/B(E2) ratio implies, we

must make theoretical calculations of what the B(M1)/B(E2) ratio should be expected in a nucleus

with a given configuration. As with much of nuclear physics, the ultimate determination of the

configuration of the nucleus is whatever is energetically favorable for given conditions. Taking

these conditions to be the deformation of the nucleus and the energy of the unpaired particle, we

can utilize a plot of these parameters to roughly estimate the configuration of the nucleus. To do so

requires the identification of which orbitals are closest to the Fermi surface. Such a plot is referred

to as a Nilsson diagram [29]. There are separate Nilsson diagrams for protons and neutrons, as

shown in Figure 28 and Figure 29, respectively.

To estimate the Fermi surface, we first enter the graph on the x-axis by identifying a deformation
parameter, ε2. For 160Lu, we can approximate ε2 = 0.2. Next, we count up to the number of

nucleons the nucleus has, either 71 protons or 89 neutrons depending on whether we are using

Figure 28 (for protons) or Figure 29 (for neutrons). The numbers on the figure represent gaps at

the magic numbers, and each orbit of nucleons is doubly degenerate due to the pairing of particles,

so each orbit that we cross adds two nucleons. By counting up to either 71 or 89 on the appropriate

figure, we reach the Fermi level for either the protons or the neutrons in 160Lu. These levels are

annotated by the intersecting lines on the Nilsson diagrams.
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Figure 28: Nilsson diagram for protons with 50 ≤ Z ≤ 82. Lines have been overlaid to identify
the Fermi surface of 160Lu. We are operating with a deformation of ε2 = 0.2 and have Z = 71.
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Figure 29: Nilsson diagram for neutrons with 82 ≤ N ≤ 126. Lines have been overlaid to identify
the Fermi surface of 160Lu. We are operating with a deformation of ε2 = 0.2 and have N = 89.



51

As this is only a rough guess at the Fermi surface, and due to the fact that many of the orbitals

are located very near one another, it is useful to test various configurations of the nucleons in the

theoretical calculation to see which yields B(M1)/B(E2) ratios most like the experimental data.

The process of these calculations is to determine the expected probability of M1 and E2 transitions

then divide the two quantities. Before those calculations can be made, however, it is necessary to

determine a number of nuclear properties.

Theoretical calculations utilized the shell model of a nucleus placed in a Woods-Saxon potential.

Further, the wave function employed for theoretical calculations assumed a deformation of 0.2,

resulting in a slightly prolate nucleus. Based on the characteristics of the unpaired particle coupled

with this slight deformation, the model calculations allow us to identify a quantity called gK , or
the gyromagnetic ratio for the unpaired particle. The gyromagnetic ratio is the ratio of an object’s

magnetic moment (in essence, how strongly the object will react in a magnetic field) to that object’s

angular momentum.

For the purposes of deformed nuclei, there are two varieties of this ratio. gK , as mentioned, is the
gyromagnetic ratio of the unpaired particle in question, and gR is the gyromagnetic ratio for the

collective motion of the nucleus. That is to say, it describes the gyromagnetic ratio of everything

else besides the unpaired particle. gR will be constant for all work done in a given nucleus, since

the total number of particles that exist in the nucleus outweighs the effects of unpairing different

individual ones. A rule of thumb is that gR is given by 70% of Z/A, which for 160Lu yields a value

of 0.31.

Another quantity necessary for theoretical B(M1)/B(E2) calculations is the quadrupole moment of

the nucleus. The quadrupole moment, or simply Q0, is a description of how the charges within the

nucleus are arranged and distributed. Since the deformation of the nucleus describes the distribu-

tion of the nucleons and consequently the distribution of the charge, the quadruple moment can be

found from just the radius and deformation of the nucleus:

Q0 =
3√
5π

R2Zβ(1 + 0.36β) (32)

With the baseline information of Q0, gK , and gR, we can move onto a description of the specific
configuration. For the theoretical calculations, the configurations are specified in terms of three val-

ues: gK , as already discussed, Ω, or the projection of the angular momentum of the nucleus along

the symmetry axis, and a third quantity called alignment, i. Figure 9 illustrates several properties
of a deformed nucleus with an unpaired nucleon orbiting about it. j is the total angular momentum
of the particle orbiting at an angle θ with respect to the symmetry axis z. The alignment, i, is
the projection of the angular momentum along the rotational axis x. These values, summarized
in Table 2, can be entered for all test configurations that were identified with the help of the Nils-

son diagrams. After taking into account all of the specifications of the nuclear configuration, the

reduced transition probability ratio is found by the following two formulae [18, 30, 21]:

B(E2 : Ii → If ) =
5

16π
e2Q2

0 〈Ii2K0|IfK〉2 (33a)
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Particle gR gK i Ω

πh11/2

0.31

1.34 3.8 3.5

πg7/2 0.62 0 3.5

νh9/2 -0.25 2.53 1.5

νi13/2 -0.35 6.4 0.5

(νi13/2)
2 -0.35 10.8 0

Table 2: Summary of values used in theoretical B(M1)/B(E2) calculations for various unpaired

particles which were pieced together into the various bands under consideration

B(M1 : I → I − 1) =
3

8πI2
{√

I2 −K2[(1−Δe′/h̄ω)(gK1 − gR)K1+

(gK2 − gR)K2 + (gK3 − gR)K3 + . . .]−
K[(gK1 − gR)i1 + (gK2 − gR)i2 + (gK3 − gR)i3 + . . .]

}2
μ2
N

(33b)

We performed branching ratio calculations for the three bands in 160Lu, as summarized by the solid

lines in Figure 27. Our primary focus was the identification of the four unpaired particles in Band

2. Notice in Figure 26 that the lowest energy state in Band 2 is at a much higher spin than the lower

energy state in Band 1. While Band 1 has only two unpaired particles, the extra “starting” energy

of Band 2 supports the hypothesis that Band 2 has four unpaired particles. The extra 10 h̄ units of
spin are an additional indication that more than two particles are involved with Band 2.

Configurations are identified by a series of numbers which specify the type of unpaired particle,

its orbital, and its angular momentum. π is used for protons and ν is used for neutrons, with

letters and fractions following to denote the particles orbital and angular momentum. Each band’s

configuration is shown in Figure 27, but the two configurations of interest in Band 2 are πh11/2 ⊗
ν(h9/2 i

2
13/2) and πg7/2 ⊗ (νi13/2)

3, henceforth referred to as configuration 1 and configuration 2,

respectively. There is some level of dispute in published work as to the correct configuration of

this band. We used configurations posited by two different papers for the nearby nucleus 162Lu

as a starting point. Neighboring nuclei typically do not depart drastically from each other in their

characteristics, so we can assume with a reasonable amount of certainty that the same band in

neighboring nuclei will exhibit the same configuration.

Reference [32] argued for configuration 1 while Reference [31] put forth configuration 2. How-

ever, Reference [31] reached this conclusion by a different method than B(M1)/B(E2) ratios, and

Reference [32] did not provide the parameters for their B(M1)/B(E2) calculations as we have done

in Table 2. Accordingly, it was difficult to verify these works. Nonetheless, after testing theoretical

calculations of both suggestions against experimental results, our data tend to support configura-

tion 1. Both of these results are plotted on top of the experimental data in Figure 27. Although the

data is by no means a perfect fit, our experimental values were clearly much higher than what con-

figuration 2 predicts, with one outlier aside, the data is generally a decent match to configuration

1.

Interestingly, our theoretical calculations for Band 3 tend to support the idea that it has the same

configuration as configuration 1 in Band 2. If this is the case, we would expect to see many



53

additional linking transitions between the two bands. On the other hand, it could be an indication

that 160Lu is different enough from 162Lu that the configuration of Band 2 in 162Lu manifests itself

as Band 3 in 160Lu.
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8 Signature Splitting and Inversion

8.1 Signature Splitting

The Routhian’s rotational invariance about the x axis allows for the existence of two closely related
decay sequences known as rotational bands (see section 6.1 for more details on decay sequences).

A given configuration of a nucleus (and consequently, a given wave function) can show two cou-

pled decay sequences with energy levels that differ in I by 1 h̄. Thus, if the spins of the bands
are off by 1 h̄, each band must have the opposite signature as demonstrated in section 3.4.1. Such
interconnected bands are often referred to as signature pairs or signature partners.

However, each band of a signature pair will not necessarily have the same energy as its partner.

The quantum number of signature arose when we considered the rotation of the spinning nucleus

about the axis of rotation. In general, we would expect that the two signatures of an orbit would

have similar energies. But, due to the Coriolis effect, this turns out not to be the case.

The Coriolis force in the nucleus is mathematically constrained to act between J and J + 1 states.
In all but one situation, the magnitudes of these paired states will be different (3/2 and 5/2, 7/2
and 9/2, etc.). The one exception is−1/2 and 1/2. That the magnitudes of theseΔJ = 1 states are
the same enables the admixing capability of the Coriolis force from a mathematical perspective.

As the wave functions of neighboring states interact and mix, the nature of the Ω = 1/2 orbital can
be successively transferred to higher orbits.

When this admixing is applied to the signature partners of a band, the alignment of one signature

will increase while the alignment of the other will decrease. In other words, Coriolis admixing

causes each signature partner to have a different energy: one energy will be shifted up, while

the other will be shifted down. This phenomenon is known as signature splitting. Since Coriolis
effects alter the nucleon’s Ω, it must also necessarily affect the energy of the orbit (since higher
alignments requires more energy—see section 3.2). Thus, the fundamental splitting of the energies

of the signature is caused by the Ω = 1/2 orbital, and the Coriolis force propagates that splitting
into higher orbitals. We expect the down-shifted orbital to be energetically favored. For an odd-odd

nucleus, this favored signature is given by:

αf =
1

2
(−1)jν−1/2 + 1

2
(−1)jπ−1/2 (34)

where jν is the j of the neutron and jπ is the j of the proton. For the πh11/2 ⊗ νi13/2 configu-
ration that will be our primary focus, this equation gives αf = 0, meaning that even spins are

favored.

8.2 Signature Inversion

In the 1980’s, it was found that in a large number of A ≈ 160 the favored signature was actu-

ally higher in energy than its supposedly-unfavored partner. At some higher spin, known as the

reversion spin, the signatures take on their expected orientation. Known as signature inversion,
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this behavior has been studied extensively in the following years. The systematic study of Liu

et al. [55] was critical to establishing this unusual phenomenon. In the following sections, we

will discuss current theoretical explanations underlying signature inversion, present our systematic

analysis of signature inversion in the A ≈ 160 region noting the predominant trends, and highlight
the differences of two nuclei that surprisingly run counter to these trends—160Lu and 162Ta.

8.3 Signature Inversion Theory

There exists no universally accepted explanation of the underlying mechanism of signature inver-

sion, though it is generally thought that such inversions of the expected favored signature band

could be produced by a triaxial shape [35, 36, 37]. That being said, some physical alteration would

have to occur in the nucleus as it transitions from high-spin to low-spin in order to produce the in-

version as is seen. There are a handful of factors that can induce shape changes in a given nuclear

configuration.

One such factor is the N and Z value of the nucleus with respect to the shell-gap sequence. We

know that nuclei are very stable (that is to say, rigid in shape) when they have a magic number of

nucleons, but nuclei are also “rigidly deformed” when their nucleons are half-way between magic

numbers. Such mid-shell nuclei exhibit strong prolate and oblate deformations. However, nuclear

deformations becomes less rigid if they are relatively close (6-8 nucleons) from a magic number.

Such nuclei are precisely the transitional nuclei studied in this work.

Since transitional nuclei are neither spherical nor strongly deformed from the total number of

nucleons, their shape is much more susceptible to the shape-driving effects of the unpaired particles

as opposed to the collective nuclear structure. Such nuclei are referred to as being soft as they are
more greatly influenced by these effects than rigid nuclei.

The νi13/2 neutron has been closely associated with the phenomenon of signature inversion and is
observed in the configurations of nearly all A ≈ 160 nuclei that show an inversion. This neutron

has been thought to generally drive towards positive triaxial deformation in nuclei. This is the γ
parameter that was briefly mentioned in section 3.2. Recall that whereas quadrupole deformations

leave a symmetry axis (think of the long axis of a football), triaxial deformations deform the

nucleus along all three axes.

Thus, the general thought is that the νi13/2 neutron could be producing triaxial deformations in soft
nuclei at low spins. Indeed, CSM calculations predict that the signature ordering should invert at
low spin in nuclei with positive γ deformation [35]. At higher spins, however, the Coriolis force

stiffens the quadrupole (versus triaxial) shape of the nucleus that allows the expected signature-

dependent energy arrangement of the bands.

8.4 Experimental Data

Figure 30 consolidates the systematics employed in our analysis and will be referred to heavily in

the following section. In this figure, the signature splitting of the πh11/2⊗νi13/2 bands for odd-odd
nuclei in theA ≈ 160 region are plotted. The signature splitting parameter can be defined as:
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ΔE(I) = E(I)− E(I − 1)− (E(I + 1)− E(I) + E(I − 1)− E(I − 2))

2
(35)

The solid circles represent the even-spin (α = 0) sequences, which are expected to be lower in
energy, while the open circles represent the odd-spin (α = 1) sequence. Note that, even though
we demonstrated that even spins are expected to be favored, the even spins initially have higher

energy than the odd spins. This ordering reverts at the reversion spin which has been annotated in

each case that it was seen.

The systematic observation of signature splitting in A ≈ 160 nuclei has yielded a few empirical

observations that we will explore in detail [55]. As we analyze these effects, keep in mind the

interplay between the shape driving effects of soft, transitional nuclei and the Coriolis force.

8.4.1 Trends within chains of isotopes

Within a chain of isotopes, that is, for a given Z, we see that the reversion spin decreases as

N increases. For instance, working from left to right within Z = 69 (isotopes of thulium), the
reversion spins follow the sequence 25 h̄, 18 h̄, 17 h̄, 16 h̄, 16 h̄ asN increases from 89 to 97. This

follows from our triaxial explanation of signature inversion. The two magic numbers closest to this

region are 82 and 126. AsN increases from 89, it moves closer to the mid-shell gap at 104. As the

isotopes near N = 104, they become more rigid and resistant to the effects of the single unpaired
nucleons. As a result, the γ deformation is lessened and it takes a lower amount of Coriolis force

(generated by a lower amount of rotation) to overcome the triaxial deformation.

This argument is strengthened by the observation that the absolute magnitude of the signature

splitting also decreases asN increases. Note that for 158Tm the splittings are≈ ±100 h̄ though for
164Tm they are nearly of imperceptible magnitude before the reversion occurs. We would expect

the signature splitting to be less extreme for a less γ deformed nuclei, which those with higher N
presumably are by this line of reasoning.

8.4.2 Trends within chains of isotones

Within a chain of isotones, that is, for a given N , we see that the reversion spin increases as Z
increases. Working from bottom to top within N = 93, we observe that the reversion spins follow
the sequence 14 h̄, 17 h̄, 19 h̄, 22 h̄ as Z increases from 67 to 73. Once again, this trend meshes

nicely with the triaxial understanding of signature inversion. For the protons, the two nearest magic

numbers are 50 and 82 with the mid-shell gap at 66. Thus, we have the opposite situation as with

the trends within isotopes. At Z = 67, we start essentially at the mid-shell gap where the nuclei are
rigidly deformed. As Z moves into the transitional region, the nucleus becomes softer and more

influenced by the γ deformation produced by the νi13/2 neutron. Consequently, a greater amount
of Coriolis force which requires a greater rotational velocity is needed to mask the triaxiality and

restore the expected ordering.
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The magnitude of signature splitting again supports our hypothesis. If the isotones are truly becom-

ing softer and more triaxial as Z increases, then we should expect the magntiude of the signature

splitting to increase along with Z. We note that the splitting magnitudes in 160Ho are close to zero

before the reversion, though those in 166Ta are of the order ≈ ±50 h̄.

8.4.3 Decrease of signature splitting magnitude

Our additional trend worth discussing is that the magnitude of signature splitting should decrease

leading up to the reversion spin, before increasing afterward. Examine the signature splitting plot

of 166Ta as an example. At the lowest spins, the signature splitting is roughly 50 keV. Just prior to
the reversion at 22 h̄, the magnitude decreases to≈ 15 keV. After the reversion spin, the magnitude
remains at ≈ 15 keV before increasing approximately quadratically up to 150 keV at the highest

observed spin.

The cause of this “necking down” of the splitting magnitude around the reversion spin is ultimately

a result of the balance of competing effects within the nucleus. Namely, these effects are γ defor-
mation that leads to signature inversion and the Coriolis force which favors the normal energy

ordering. At the lowest spins, the triaxial-driving effects of the i13/2 neutron are the most influen-
tial since the magnitude of the Coriols force is smallest. As such, we would expect the signature

inversion to be the greatest when the nucleus is not affected by Coriolis effects at low spins.

At the reversion frequency, the Coriolis force overpowers the γ deformation sufficiently to restore
the normal energy ordering, but that is not to say that triaxiality is completely banished from the

nucleus. Rather, it will always be present so long as the i13/2 neutron remains an unpaired particle.
However, its influence will become increasingly small as higher spins produce even greater Coriolis

effects. This explains the gradual increase in the energy gap between the signature partners after

the reversion spin.

We can summarize the conclusions of our systematics with three rules:

1. For a given Z, as N increases, the reversion spin decreases.

2. For a given N , as Z increases, the reversion spin increases.

3. For a given Z, the magnitude of the signature splitting at low spin decreases as N increases.

8.5 Exceptions to the trends

Despite the general agreement of the nuclei in Figure 30 to the systematics just presented, two

nuclei dramatically depart from these trends. These nuclei are 162Ta [38] and 160Lu located in the

upper-left two plots of Figure 30. Due to our present work, 160Lu has been observed at high enough

spins to allow for a complete analysis of its signature inversion qualities. 162Ta has enough of a

foundation that we can compare it to 160Lu but not enough to fully analyze in its own right. As

such, we will focus on the anomalies seen in 160Lu.
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There are two interesting phenomena seen in 160Lu. The first is its exceptionally high reversion spin

of 30 h̄—significantly greater than the next highest reversion spin in the systematics. The second

is the initial necking down around 17 h̄ that is not accompanied by the reversion spin. The first

quarter of the signature splitting plot looks entirely consistent with the rest of the schematic. The

magnitude begins decreasing as spin increases, and it appears as though the magnitude bottleneck

is heading towards a reversion spin at ≈ 23 h̄. In fact, if this were to be the case, 160Lu would

perfectly fall in line with the other trends. Its hypothetical reversion spin of 23 h̄ would be the

highest within the lutetium isotopes, as expected for it being the most neutron-rigid nucleus, and it

would be on course within the N = 89 isotones for being a proton-soft nucleus.

However, some additional physical phenomenon intervenes to delay the reversion spin a consider-

able amount. Similar behavior is evident in 162Ta, though the actual reversion spin has not yet been

observed. Nonetheless, we do see the bottle neck approach a reversion spin of around 25 − 30 h̄
before the signature inversion becomes reinforced. As 160Lu and 162Ta are neighboring nuclei, it is

reasonable to suspect that the same physics affects the signature splitting of each.
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9 Description of 160Lu

9.1 Alignment Gain and EF Transition

To attempt an explaination for the unusual signature inversion in 160Lu, we explored the alignment

gains in the πh11/2⊗νi13/2 bands ofN = 89 nuclei in this region. The resulting plots are shown in
Figure 31. Recall that alignment is the component of the total angular momentum of the unpaired

particles along the axis of rotation.

All four of these nuclei show at least the beginnings of an alignment gain towards the end of the

plotted bands, if not a substantial gain. This corresponds to the BC crossing. However, 160Lu and
162Ta also show an additional gain of ≈ 4 h̄ around h̄ω = 0.25MeV. This cusp, denoted by the

vertical line in Figure 31, is absent in the lower-Z nuclei. We believe that this alignment gain is

the EF crossing which subsequently has a substantial impact on the signature splitting dynamics

of these nuclei.

The evidence for our observation of the EF crossing comes from a study conducted by Hübel et
al. [23] of various excitation bands in the neighboring even-even nucleus 162Hf. Recall that we

studied 162Hf earlier in section 3.4.3 when we first presented the idea of band crossings. As an

even-even nucleus, the ground state configuration of 162Hf has quasiparticles (QPs) in all of the

negative-energy trajectories and holes in the positive energy trajectories. Thus, as a particle in the

−E trajectory approaches the interaction region with the positive-energy F orbital, it can cross

into the positive-energy trajectory resulting in an alignment gain.

If, however, we consider a rotational band of 162Hf that already has either the E or F orbital

occupied (specifically, the AE and AF configurations), we observe a different result. Take the AE
case. As the particle in the −F orbital approaches the EF crossing, it meets the particle in the E
orbital rather than the hole it saw in the ground state case. As such, the EF crossing is blocked in

these bands and we see no such alignment gain.

This phenomenon is shown in Figure 32. The first major backbend in the ground state band is the

AB crossing. For the AE and AF bands, the initial upper-left movement shows the breaking of

ground state pairs and the establishment of these bands as two-particle systems. Thus, we have

three comparable two-particle bands: AB, AE, and AF . Note that as spin increases, the AE and

AF bands show virtually no alignment gain from ≈ 0.2 − 0.4 MeV. The AB band, however,

gradually increases in alignment through this region. The only explanation for the difference in

behavior is that the EF crossing is allowed for the AB band but is blocked in AE and AF .

Admittedly, 162Hf is somewhat of a different nucleus than 160Lu and 162Ta since it is even-even.

However, after the 162Hf nucleus goes through both theAB crossing and theEF crossing, it adopts

the four-QP configuration ABEF . Should 160Lu undergo the EF transition as we propose it does,

it also would show a four-QP configuration based on the EF nucleons as well as its ground state

unpaired nucleons (πh11/2νi13/2). Though the analogy is not without room for error, we believe

that there is no explanation for the alignment gain seen in 160Lu and 162Ta other than the EF
crossing. The observation of that crossing in the nearby nucleus 162Hf provides a substantial piece

of supporting evidence that the EF crossing plays a role in this region.
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(b) 160Lu
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(c) 158Tm
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(d) 156Ho
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Figure 31: Alignment plots for the πh11/2νi13/2 bands in the odd-odd, N = 89 Ho, Ta, Lu, and Ta
nuclei. Plots were creating using Harris Parameters of I0 = 12 and I2 = 90.
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Figure 32: Alignment plots for bands in 162Hf. The hollow circle and square markers show the AE
and AF bands respectively, while the solid circle shows the AB band. Note that, between 0.2 and
0.4MeV of rotational energy, the AB band increases in alignment while the AE and AF bands do

not. This is a product of the blocked EF crossing in the latter two bands.

9.2 Shape-Driving Effects of the EF Crossing

Having established the presence of the EF crossing in the πh11/2 ⊗ νi13/2 band of 160Lu, we

must explore the implications of the unpairing of those nucleons on the shape of the nucleus,

and ultimately the atypical signature inversion they exhibit. As discussed in section 8.3, one well-

supported hypothesis of the origin of signature inversion is triaxial shape deformation (γ). At lower
spins, the shape-driving effects of individual nucleons is the dominant factor. Only at higher spins

can Coriolis effects overwhelm the influence of individual nucleons. Thus, for most nuclei, once

the Coriolis forces take over, the expected ordering of the signature partners is restored. However,

as we have discussed, this restoration is delayed in the two nuclei we are focusing on.

Figure 33 shows theoretical predictions for the γ driving tendencies of certain nucleons. Figure 33a
focuses on individual nucleon orbitals, while Figure 33b highlights these effects for entire config-

urations. In these plots, the y-axis represents the overall energy of the configuration versus the
amount of γ deformation along the x-axis. In general, nature tends to prefer whichever lowest

energy option is available. Thus, we expect the lowest point on these curves to be observed in

reality.

The four-QP configuration, similar to a post-EF crossing 160Lu configuration, is labeled as (νi13/2)
2

(νh9/2)
2 in Figure 33b. Since this curve has its absolute minimum located at γ = 15◦, we know

that the energy of this four-QP configuration is the lowest at 15◦ of γ deformation. Accordingly, we
expect that this configuration will preferentially drive the nuclear shape towards this deformation

parameter.

Next, we can confirm this behavior by examining the constituent nucleons of that four-QP band in

Figure 33a. Specifically, we are looking at the i13/2 and the h9/2 neutrons. Although the effect is

somewhat less obvious than the trend for the configuration as a whole, we can see that the lines
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(a) Illustration of the shape-driving effect

of individual nucleons in specific orbitals.

(b) Illustration of the effect of γ deforma-

tion on the energies of configurations in
154Dy. The absolute minimum of each

curve corresponds to the value of γ ex-

pected. The (νi13/2)
2 configuration drives

the nuclear shape towards γ = 10◦, while
the (νi13/2)

2(νh9/2)
2 configuration drives

toward γ = 15◦.

Figure 33: Shape-driving effects of nucleons [56].

for these two nucleons are trending towards lower energy at higher γ deformation. Again, this

supports our argument that the unpairing of EF contributes additional triaxiality to the shape of

the nucleus.

Since we know that the transitional nuclei are softer than mid-shell nuclei, specifically in that

they are more susceptible to the shape-driving effects of given nucleons, these nuclei are likely

to be more affected by the triaxial tendencies of the EF crossing. It appears that, in the two

transitional nuclei, theEF crossing occurs even before the expected signature inversion frequency,

thus imparting additional triaxiality and prolonging the effects of the inversion. For the rest of the

nuclei in our systematics, the crossing happened after Coriolis effects had already dominated the

shape of the nuclei and thus similar patterns were not observed. This explains the initial necking

down of the signature inversion—the nucleus begins by behaving normally, then the EF crossing

alters the shape of the nucleus in a way that increases the magnitude of the signature inversion.

We now have four QP’s all driving the nucleus towards positive triaxiality which requires an even

stronger amount of Coriolis force (generated at a higher spin) to overcome. The other A ≈ 160
nuclei simply undergo the reversion before the EF crossing, which causes the relatively minor

EF crossing to be entirely masked by the combination of the rigidly deformed nucleus and strong

Coriolis forces.
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10 Conclusion

Our look at the odd-odd nucleus 160Lu was motivated principally by a desire to more closely

observe a nucleus in the transitional region between magic nuclei and mid-shell gap nuclei. We

employed the high-resolution capabilities of ANL’s Gammasphere to significantly expound upon

the knowledge of the ground state band of 160Lu, in addition to more fully describing two additional

bands. Using B(M1)/B(E2) ratio calculations, we assigned the bands the respective configurations

of πh11/2 ⊗ νi13/2, πh11/2 ⊗ ν(h9/2 i
2
13/2), and πh11/2 ⊗ ν(h9/2 i

2
13/2).

We continued our analysis by looking at the systematics of signature inversion in the A ≈ 160 re-
gion, and determined that 160Lu exhibited unusual behavior when compared with its neighbors. We

used experimental alignment information along with theoretical CSM calculations to investigate

the cause of the delayed inversion and propose that it is due to extra triaxiality imparted on the nu-

cleus by the unpairing of h9/2 neutrons. Since
160Lu is a transitional nucleus and its shape is more

greatly influenced by individual nucleons, this effect is masked in its more rigid neighbors.
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